Radioelectronics and Communications Systems

, Volume 61, Issue 12, pp 571–578 | Cite as

Sierpinski Carpet Patterned Rectangular Dielectric Resonator Antenna for X-Band Application Using Teflon

  • Dipali SorenEmail author
  • Rowdra Ghatak
  • R. K. Mishra
  • D. R. Poddar


This paper presents a wideband Sierpinski carpet fractal patterned rectangular Dielectric Resonator Antenna (DRA) operating in the X-band, which is characterized by dielectric waveguide model method (DWM). In order to decrease the cost of theDRAthe low-cost teflon is used as the material. Aprototype is realized to validate the results of the simulation. The paper provides a comparison between conventional rectangular DRA and fractal shaped rectangular DRAs of the first and the second iterations. The antenna design methodology is discussed along with its resonance and radiation characteristics. The validity of the obtained results is proved by the close match of the experimental and simulation results. The measurements on prototype show impedance bandwidth of 48% covering the entire X-band with similar radiation pattern throughout the band with a gain of 7.5 dBi over 9.0–11.5 GHz.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Long, M. W. Mcallister, L. C. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag. 31, No. 3, 406 (1983). DOI: 10.1109/TAP.1983.1143080.CrossRefGoogle Scholar
  2. 2.
    K. M. Luk, K. W. Leung, (eds.). Dielectric Resonator Antennas (Research Studies Press Ltd., England, 2002).Google Scholar
  3. 3.
    T. A. Denidni, Y. Coulibaly, H. Boutayab, “Hybrid dielectric resonator antenna with circular mushroom–like structure for gain improvement,” IEEE Trans. Antennas Propag. 57, No. 4, 1043 (2009). DOI: 10.1109/TAP. 2009.2015809.CrossRefGoogle Scholar
  4. 4.
    A. A. Kishk, Y. Yin, A. W. Glisson, “Conical dielectric resonator antennas for wide–band applications,” IEEE Trans. Antennas Propag. 50, No. 4, 469 (Apr. 2002). DOI: 10.1109/TAP.2002.1003382.CrossRefGoogle Scholar
  5. 5.
    A. A. Kishk, “Tetrahedron and triangular dielectric resonator antenna with wideband performance,” Proc. of IEEE AP–S Int. Symp., 16–21 June 2002, San Antonio, USA (IEEE, 2002), Vol. 4, pp. 462–465. DOI: 10.1109/ APS.2002.1017021.Google Scholar
  6. 6.
    A. A. Kishk, “Wide–band truncated tetrahedron dielectric resonator antenna excited by a coaxial probe,” IEEE Trans. Antennas Propag. 51, No. 10, 2913 (Oct. 2003). DOI: 10.1109/TAP.2003.816300.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tayeb A. Denidni, Q. Rao, A. R. Sebak, “Broadband L–shaped dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett. 4, 453 (2005). DOI: 10.1109/LAWP.2005.860198.CrossRefGoogle Scholar
  8. 8.
    T.–H. Chang, Y.–C. Huang, W.–F. Su, J.–F. Kiang, “Wideband dielectric resonator antenna with a tunnel,” IEEE Antennas Wireless Propag. Lett. 7, 275 (2008). DOI: 10.1109/LAWP.2008.928477.CrossRefGoogle Scholar
  9. 9.
    Y. Coulibaly, Tayeb A. Denidni, Halim Boutayeb, “Broadband microstrip–fed dielectric resonator antenna for X–band applications,” IEEE Antennas Wireless Propag. Lett. 7, 3441 (2008). DOI: 10.1109/LAWP.2008.921326.CrossRefGoogle Scholar
  10. 10.
    M. Lapierre, Y. M. M. Antar, A. Ittipiboon, A. Petosa, “A wideband monopole antenna using dielectric resonator loading,” IEEE Antennas Propagation Society Int. Symp. Dig., 22–27 June 2003, Columbus, USA (IEEE, 2003), Vol. 3, pp. 16–19. DOI: 10.1109/APS.2003.1219778.Google Scholar
  11. 11.
    G. P. Junker, A. A. Kishk, A. W. Glisson, D. Kajifez, “Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode,” Electronics Lett. 30, No. 2, 97 (1994). DOI: 10.1049/el:19940114.CrossRefGoogle Scholar
  12. 12.
    G. P. Junker, A. A. Kishk, A. W. Glisson, D. Kajfez, “Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna,” Electronics Lett. 30, No. 3, 177 (1994). DOI: 10.1049/el:19940191.CrossRefGoogle Scholar
  13. 13.
    Y. Coulibaly, T. A. Denidni, L. Talbi, “Design of a broadband hybrid dielectric resonator antenna for X–band applications,” J. Electromagn. Waves Appl. 20, No. 12, 1629 (2006). DOI: 10.1163/156939306779292354.CrossRefGoogle Scholar
  14. 14.
    P. Rezaei, M. Hakkak, K. Forooraghi, “Effect of magnetic layer on the microstrip–excited rectangular dielectric resonator antennas bandwidth,” J. Electromagn. Waves Appl. 21, No. 7, 915 (2007). DOI: 10.1163/ 156939307780749011.CrossRefGoogle Scholar
  15. 15.
    S. P. Kingsley, S. G. O’Keefe, “Beam steering and monopulse processing of probe–fed dielectric resonator antennas,” IEE Proc. – Radar, Sonar Navigation 146, No. 3, 121 (June 1999). DOI: 10.1049/ip–rsn:19990307.CrossRefGoogle Scholar
  16. 16.
    R. Ghatak, D. R. Poddar, R. K. Mishra, “Design of Sierpinski gasket fractal microstrip antenna using real coded genetic algorithm,” IET Microwave Antennas Propag. 3, No. 7, 1133 (2009). DOI: 10.1049/iet–map.2008.0257.CrossRefGoogle Scholar
  17. 17.
    Dipali Soren, Rowdra Ghatak, R. K. Mishra, D. R. Poddar, “Sierpinski carpet fractal pattern embedded multisegment rectangular dielectric resonator antenna for Wi–MAX and WLAN application,” Proc. of Int. Symp. on Microwaves and Millimeterwaves: Basics and Technology, ISoMM 09, 14–16 Jan. 2009, Kolkata, India (2009).Google Scholar
  18. 18.
    D. P. Karmakar, Dipali Soren, Rowdra Ghatak, Dipak R. Poddar, Rabindra K. Mishra, “A wideband Sierpinski carpet fractal cylindrical dielectric resonator antenna for X–band application,” Proc. of IEEE Applied Electromagnetics Conf., 14–16 Dec. 2009, Kolkata, India (IEEE, 2009). DOI: 10.1109/AEMC.2009.5430713.Google Scholar
  19. 19.
    R. K. Gangwar, S. P. Singh, D. Kumar, “A modified fractal rectangular curve dielectric resonator antenna for WiMAX application,” PIER C 12, 37 (2010). DOI: 10.2528/PIERC09111303.CrossRefGoogle Scholar
  20. 20.
    D. Guha, A. Banerjee, C. Kumar, Y. M. M. Antar, “Higher order mode excitation for high–gain broadside radiation from cylindrical dielectric resonator antennas,” IEEE Trans. Antennas Propag. 60, No. 1, 71 (Jan. 2012). DOI: 10.1109/TAP.2011.2167922.CrossRefGoogle Scholar
  21. 21.
    A. Motevasselian, A. Ellgardt, B. L. G. Jonsson, “A circularly polarized cylindrical dielectric resonator antenna using a helical exciter,” IEEE Trans. Antennas Propag. 61, No. 3, 1439 (Mar. 2013). DOI: 10.1109/TAP.2012. 2229954.CrossRefGoogle Scholar
  22. 22.
    Y. X. Sun, K. W. Leung, “Dual–band and wideband dual–polarized cylindrical dielectric resonator antennas,” IEEE Antennas Wireless Propag. Lett. 12, 384 (Mar. 2013). DOI: 10.1109/LAWP.2013.2251993.CrossRefGoogle Scholar
  23. 23.
    X. S. Fang, K. W. Leung, K. M. Luk, “Theory and experiment of three–port polarization–diversity cylindrical dielectric resonator antenna,” IEEE Trans. Antennas Propag. 62, No. 10, 4945 (Oct. 2014). DOI: 10.1109/TAP. 2014.2341698.CrossRefzbMATHGoogle Scholar
  24. 24.
    Y. M. Pan, S. Y. Zheng, B. J. Hu, “Design of dual–band omnidirectional cylindrical dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett. 13, 710 (Apr. 2014). DOI: 10.1109/LAWP.2014.2314745.CrossRefGoogle Scholar
  25. 25.
    O. G. Avadanei, M. G. Banciu, L. Nedelcu, “Higher–order modes in high–permittivity cylindrical dielectric resonator antenna excited by an off–centered rectangular slot,” IEEE Antennas Wireless Propag. Lett. 13, 1585 (Aug. 2014). DOI: 10.1109/LAWP.2014.2344860.CrossRefGoogle Scholar
  26. 26.
    Y. M. Pan, S. Y. Zheng, W. Li, “Dual–band and dual–sense omnidirectional circularly polarized antenna,” IEEE Antennas Wireless Propag. Lett. 13, 706 (Apr. 2014). DOI: 10.1109/LAWP.2014.2314744.CrossRefGoogle Scholar
  27. 27.
    M. Khalily, M. R. Kamarudin, M. Mokayef, M. H. Jamaluddin, “Omnidirectional circularly polarized dielectric resonator antenna for 5.2–GHzWLANapplications,” IEEE Antennas Wireless Propag. Lett. 13, 443 (Mar. 2014). DOI: 10.1109/LAWP.2014.2309657.CrossRefGoogle Scholar
  28. 28.
    Amir Altaf, Youngoo Yang, Kang–Yoon Lee, Keum Cheol Hwang, “Circularly polarized Spidron fractal dielectric resonator antenna,” IEEE Antennas Wireless Propag. Lett. 14, 1806 (Apr. 2015). DOI: 10.1109/ LAWP.2015.2427373.CrossRefGoogle Scholar
  29. 29.
    Sudipta Maity, Bhaskar Gupta, “Experimental investigations on wideband triangular dielectric resonator antenna,” IEEE Trans. Antennas Propag. 64, No. 12, 5483 (Dec. 2016). DOI: 10.1109/TAP.2016.2607765.CrossRefGoogle Scholar
  30. 30.
    Hui Tang, Jian–Xin Chen, Wen–Wen Yang, Li–Heng Zhou, Wenhua Li, “Differential dual–band dual–polarized dielectric resonator antenna,” IEEE Trans. Antennas Propag. 65, No. 2, 855 (Feb. 2017). DOI: 10.1109/TAP. 2016.2630661.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Dipali Soren
    • 1
    Email author
  • Rowdra Ghatak
    • 2
  • R. K. Mishra
    • 3
  • D. R. Poddar
    • 4
  1. 1.Chhattisgarh Swami Vivekanand Technical UniversityBhilaiIndia
  2. 2.National Institute of Technology DurgapurDurgapurIndia
  3. 3.Berhampur UniversityBerhampurIndia
  4. 4.Jadavpur UniversityKolkataIndia

Personalised recommendations