Skip to main content
Log in

Self-Action of Intense Millimeter Waves in Waveguides with Integrated P-I-N Structures

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The nonlinear interaction of high power millimeter (mm) electromagnetic waves with silicon integral p-i-n structures placed in a metal waveguide is theoretically investigated. The level of double injection of charge carriers due to detection of high intensity millimeter wave electric field in p-i-n structures is estimated. A mathematical model of the mutual influence of electromagnetic waves and injected charge carriers in the active region of p-i-n structures is formulated. A numerical solution of the nonlinear Helmholtz equation supplemented by proper boundary conditions on the active region boundary is obtained. The effect of high-power electromagnetic waves leads to an excessive injection of carriers into the active region of the semiconductor between p+-i, n+-i injection junctions and redistribution of the electric field in the structure. The reflection and transmission coefficients vary rapidly with the change in the input amplitude of the electromagnetic wave. This leads to bistability of these coefficients. The bistability is more pronounced in the low-frequency part of the mm range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pozar, Microwave Engineering (Wiley, N.Y., 2010).

    Google Scholar 

  2. K. Ng Kwok, Complete Guide to Semiconductor Devices (Wiley-Interscience, N.Y., 2002).

    Google Scholar 

  3. S. Sze, K. Ng Kwok, Physics of Semiconductor Devices (Wiley-Interscience, N.Y., 2006).

    Book  Google Scholar 

  4. M. S. Gusiatyner, “Loss resistance of forward-biased p-i-n structures,” Elekronnaya Tekhnika, Ser. 2. Poluprovodnikovye Pribory, No. 7, 54 (1970).

    Google Scholar 

  5. L. S. Liberman, “Resistance of p-i-n diode at microwave frequencies,” Elekronnaya Tekhnika, Ser. 2. Poluprovodnikovye Pribory, No. 5, 16 (1971).

    Google Scholar 

  6. I. V. Malskiy, B. A. Sestroretskiy (eds.), Microwave Devices Based on Semiconductor Diodes. Design and Calculations [in Russian] (Sov. Radio, Moscow, 1969).

    Google Scholar 

  7. E. I. Adirovich, P. M. Karageorgii-Alkalaev, A. Yu. Leiderman, Double-Injection Currents in Semiconductors [in Russian, ed. by Galperin] (Sov. Radio, Moscow, 1978).

    Google Scholar 

  8. S. V. Koshevaya, Ya. I. Kishenko, M. I. Smoilovskii, V. A. Trapezon, “High-speed broad-band modulators based on p-i-n structures (review),” Radioelectron. Commun. Syst. 32, No. 10, 11 (1989).

    Google Scholar 

  9. V. Grimalsky, S. Koshevaya, A. Zamudio-Lara, J. Escobedo-Alatorre, “Terahertz modulators based on silicon p-i-n-structures in dielectric waveguides,” Terahertz Sci. Technol. 4, No. 2, 59 (2011). URI: http://www.tstnetwork.org/10.11906/TST.059-070.2011.06.08.

    Google Scholar 

  10. S. V. Koshevaya, E. A. Gutierrez, I. Moroz, M. Tecpoyotl-T., V. Grimalsky, “Injection problem in powerful quasi-optical modulator,” Proc. of Int. Conference on Microwaves and Radar, MIKON-98, 20–22 May 1998, Krakow, Poland (IEEE, 1998), Vol. 2, pp. 348–350. DOI: 10.1109/MIKON.1998.740820.

    Google Scholar 

  11. N. F. Karushkin, A. V. Koberidze, L. E. Yunisov, “Experimental investigation of p-i-n structures with a thick base at a high power level,” Radioelectron. Commun. Syst. 33, No. 3, 74 (1990).

    Google Scholar 

  12. N. F. Karushkin, “Millimeter-wave devices for modulation and switching,” Telecom. Radio Eng. 63, No. 7–12, 607 (2005). DOI: 10.1615/TelecomRadEng.v63.i7.30.

    Article  Google Scholar 

  13. V. V. Zaporozhets, A. V. Koberidze, L. E. Yunisov, M. I. Yatsyuk, “Experimental investigation of microwave p-i-n diode attenuators at a high-power level,” Radioelectron. Commun. Syst. 30, No. 5, 115 (1987).

    Google Scholar 

  14. V. V. Vladimirov, A. F. Volkov, E. Z. Meylikhov, Plasma in Semiconductors [in Russian] (Atomizdat, Moscow, 1979).

    Google Scholar 

  15. P. Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, N.Y., 2010).

    Book  MATH  Google Scholar 

  16. V. L. Bonch-Bruevich, S. G. Kalashnikov, Semiconductor Physics [in Russian] (Nauka, Moscow, 1990).

    Google Scholar 

  17. Yu. K. Pozhela, Plasma and Current Instabilities in Semiconductors [in Russian] (Nauka, Moscow, 1977).

    Google Scholar 

  18. R. A. Smith, Semiconductors, 2nd ed. (Cambridge University Press, 1978).

    MATH  Google Scholar 

  19. R. A. Vitlina, A. Dykhne, “Reflection of electromagnetic waves from the surfaces of fine relief,” ZhETF 99, No. 6, 1758 (1991).

    Google Scholar 

  20. G. E. Pikus, Theoretical Fundamentals of Semiconductor Devices [in Russian] (Nauka, Moscow, 1965).

    Google Scholar 

  21. I. M. Vikulin, V. I. Stafeev, Physics of Semiconductor Devices [in Russian] (Radio i Svyaz’, Moscow, 1990).

    Google Scholar 

  22. V. I. Gaman, Physics of Semiconductor Devices [in Russian] (NTL, Tomsk, 2000).

    Google Scholar 

  23. A. A. Samarskiy, A. V. Gulin, Numerical Methods [in Russian] (Nauka, Moscow, 1989).

    Google Scholar 

  24. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press, N.Y., 2000).

    Book  MATH  Google Scholar 

  25. R. Collin, Field Theory of Guided Waves (IEEE Press, N.Y., 1991).

    MATH  Google Scholar 

  26. A. A. Samarskiy, Theory of Differential Circuits [in Russian] (Nauka, Moscow, 1989).

    Google Scholar 

  27. H. M. Gibbs, Optical Bistability (Academic Press, Orlando, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Moroz.

Additional information

Original Russian Text © I. Moroz, V.V. Grimalsky, S.V. Koshevaya, A. Kotsarenko, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 3, pp. 150–162.

The authors are grateful to SEP-CONACyT, Mexico, for partial support of our work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, I., Grimalsky, V.V., Koshevaya, S.V. et al. Self-Action of Intense Millimeter Waves in Waveguides with Integrated P-I-N Structures. Radioelectron.Commun.Syst. 61, 110–120 (2018). https://doi.org/10.3103/S0735272718030032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718030032

Navigation