Advertisement

Radioelectronics and Communications Systems

, Volume 61, Issue 2, pp 80–86 | Cite as

Technological Fabrication Features of Microwave Device with Schottky Barriers

  • V. S. Dmitriev
  • L. B. Dmitrieva
  • E. Ya. Shvets
Article
  • 14 Downloads

Abstract

At present, research and development of heterojunctions are conducted in the directions of searching for new compositions and technological regimes for the creation of ohmic and barrier transitions for gallium arsenide. The transition to silver-based metallization, which has large thermal and electrical conductivity comparing with gold and a relatively low diffusion coefficient to gallium arsenide, should improve the technical characteristics of the devices. One of the most important technological operations in the formation of Schottky ohmic contacts and barriers is thermal annealing. Silver to gallium arsenide contacts are made in vacuum by the method of thermal evaporation. The deposition and thermal treatment regimes for creating ohmic contacts of Ag–Ge–In/nn+ GaAs with specific contact resistance ρc = (5...7)+10–5 Ω.cm2 are developed. The influence of the substrate temperature during the silver deposition and the annealing temperature on the height of the Schottky barrier Ag/nn+ GaAs, the injection coefficient γ and the nonideality factor η is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Belous, V. A. Solodukha, S. V. Shvedov, Space Electronics, 2nd book [in Russian] (Tekhnosfera, Moscow, 2015).Google Scholar
  2. 2.
    E. Ya. Shvets, A. G. Kolomoets, “Estimation of prospects of application of GaAs and alloys on his basis as materials for sun elements,” Metallurgy, No. 30, 132 (2013). URI: http://www.zgia.zp.ua/gazeta/Metallurgy_30_132.pdf.Google Scholar
  3. 3.
    M. V. Zagirniak, A. P. Oksanich, V. R. Petrenko, S. E. Pritchin, V. A. Terban, “Development of modern technologies for growing structurally perfect ingots of electronic gallium arsenide,” Proc. of 5th Int. Sci. Conf. on Functional Base of Nanoelectronics, Katsiveli (NURE, Kharkiv, 2012), pp. 5–13.Google Scholar
  4. 4.
    S. A. Zuev, G. V. Kilessa, E. E. Asanov, V. V. Starostenko, S. V. Pokrova, “Dependence of the conductivity on the active-region thickness in GaAs thin-film Schottky diodes,” Semiconductors 50, No. 6, 810 (2016). DOI: 10.1134/S1063782616060269.CrossRefGoogle Scholar
  5. 5.
    Chan Hyeong Park, Jong-Ho Lee, “Formulas of 1/f noise in Schottky barrier diodes under reverse bias,” Solid-State Electronics 69, 85 (2012). DOI: 10.1016/j.sse.2011.11.030.CrossRefGoogle Scholar
  6. 6.
    S. V. Platonov, N. V. Permyakov, B. I. Seleznev, V. A. Moshnikov, E. Yu. Kozlovskiy, A. M. Osipov, “Low-noise gallium-arsenide amplifiers under the influence of electromagnetic interferences of increased intensity,” Bulletin of Novgorod State University, No. 67, 29 (2012). URI: http://www.novsu.ru/file/1010219.Google Scholar
  7. 7.
    E. V. Erofeev, “Formation of metal-semiconductor contacts with metallization on the basis of Al and Cu for GaAs microwave transistors with high electron mobility,” PhD thesis, specialization: 01.04.04 Physical electronics. (Tomsk, 2012). URI: http://old.tusur.ru/export/sites/ru.tusur.new/ru/science/education/diss/2012/03/01.pdf.Google Scholar
  8. 8.
    G. I. Koltsov, S. I. Didenko, A. V. Chernykh, S. V. Chernykh, A. P. Chubenko, Yu. N. Sveshnikov, “Schottky contacts to high-resistivity epitaxial GaAs layers for detectors of particles and X-or-ray photons,” Semiconductors 46, No. 8, 1066 (2012). DOI: 10.1134/S106378261208009X.CrossRefGoogle Scholar
  9. 9.
    H. Tecimer, A. Türüt, H. Uslu, ş. Altýndal, Ý. Uslu, “Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs),” Sensors and Actuators A: Physical 199, 194 (2013). DOI: 10.1016/j.sna.2013.05.027.CrossRefGoogle Scholar
  10. 10.
    P. Jayavel, J. Kumar, P. Ramasamy, R. Premanand, “On the evaluation of Schottky barrier diode parameters of Pd, Au and Ag/n-GaAs,” Indian J. Eng. Materials Sci. 7, No. 5-6, 340 (2000). URI: http://nopr.niscair.res.in/handle/123456789/24425.Google Scholar
  11. 11.
    V. S. Dmitriev, E. Ya. Shvets, “Technological features of manufacturing a traveling wave amplifier,” Proc. of 10th Int. Youth Sci. Conf. on Modern Problems of Radio Engineering and Telecommunications, RT-2014, Sevastopol (SevNTU, 2014). p. 158. ISBN 978-617-612-072.Google Scholar
  12. 12.
    P. Huo, I. Rey-Stolle, “Ti/Pd/Ag contacts to n-type GaAs for high current density devices,” J. Electronic Materials 45, No. 6, 2769 (2016). DOI: 10.1007/s11664-016-4432-6.CrossRefGoogle Scholar
  13. 13.
    E. Özavcý, S. Demirezen, U. Aydemir, ş. Altýndal, “A detailed study on current-voltage characteristics of Au/n-GaAs in wide temperature range,” Sensors and Actuators A: Physical 194, 259 (2013). DOI: 10.1016/j.sna.2013.02.018.CrossRefGoogle Scholar
  14. 14.
    M. K. Hudait, P. Venkateswarlu, S. B. Krupanidhi, “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures,” Solid-State Electronics 45, No. 1, 133 (2001). DOI: 10.1016/S0038-1101(00)00230-6.CrossRefGoogle Scholar
  15. 15.
    D. Korucu, A. Turut, ş. Altýndal, “The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range,” Current Appl. Phys. 13, No. 6, 1101 (2013). DOI: 10.1016/j.cap.2013.03.001.CrossRefGoogle Scholar
  16. 16.
    W. P. Leroy, K. Opsomer, S. Forment, R. L. Van Meirhaeghe, “The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes,” Solid-State Electronics 49, No. 6, 878 (2005). DOI: 10.1016/j.sse.2005.03.005.CrossRefGoogle Scholar
  17. 17.
    Jing Lv, Fachun Lai, Limei Lin, Yongzhong Lin, Zhigao Huang, Rong Chen, “Thermal stability of Ag films in air prepared by thermal evaporation,” Appl. Surface Sci. 253, No. 17, 7036 (2007). DOI: 10.1016/j.apsusc.2007.02.058.CrossRefGoogle Scholar
  18. 18.
    H. C. Kim, T. L. Alford, “Improvement of the thermal stability of silver metallization,” J. Appl. Phys. 94, No. 8, 5393 (2003). DOI: 10.1063/1.1609646.CrossRefGoogle Scholar
  19. 19.
    K. Sugawara, M. Kawamura, Y. Abe, K. Sasaki, “Comparison of the agglomeration behavior of Ag(Al) films and Ag(Au) films,” Microelectron. Eng. 84, No. 11, 2476 (2007). DOI: 10.1016/j.mee.2007.05.050.CrossRefGoogle Scholar
  20. 20.
    M. Kawamura, M. Yamaguchi, Y. Abe, K. Sasaki, “Electrical and morphological change of Ag-Ni films by annealing in vacuum,” Microelectron. Eng. 82, No. 3-4, 277 (2005). DOI: 10.1016/j.mee.2005.07.035.CrossRefGoogle Scholar
  21. 21.
    A. Christou, “Solid phase formation in Au: Ge/Ni, Ag/In/Ge, In/Au: Ge GaAs ohmic contact systems,” Solid-State Electronics 22, No. 2, 141 (1979). DOI: 10.1016/0038-1101(79)90106-0.CrossRefGoogle Scholar
  22. 22.
    V. S. Dmitriev, E. Ya. Shvets, L. B. Dmitrieva, “Technological feature of fabrication of contact to GaAs,” Scientific Bulletin of KUEITM ‘New Technologies’, No. 1-2, 48 (2013).Google Scholar
  23. 23.
    A. V. Murel, V. M. Daniltsev, E. V. Demidov, M. N. Drozdov, V. I. Shashkin, “Effect of rapid thermal annealing on the parameters of gallium-arsenide low-barrier diodes with near-surface δ-doping,” Semiconductors 47, No. 11, 1470 (2013). DOI: 10.1134/S106378261311016X.CrossRefGoogle Scholar
  24. 24.
    T. U. Kampen, S. Park, D. R. T. Zahn, “Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer,” Appl. Surface Sci. 190, No. 1-4, 461 (2002). DOI: 10.1016/S0169-4332(01)00919-9.CrossRefGoogle Scholar
  25. 25.
    V. Ya. Niskov, “Measurement of transient resistance of ohmic contacts to thin layers of semiconductors,” Instrum. Exp. Tech., No. 1, 235 (1971).Google Scholar
  26. 26.
    V. Ya. Niskov, V. V. Zadde, A. K. Zaitseva, V. I. Streltsova, “Measurement of transient resistance of contacts on thin layers of semiconductor,” Instrum. Exp. Tech., No. 2, 240 (1971).Google Scholar
  27. 27.
    V. Ya. Niskov, G. A. Kubetskiy, “Ohmic contacts resistance to a thin semiconductor layers,” Semiconductors 4, No. 9, 1806 (1970).Google Scholar
  28. 28.
    S. M. Sze, K. N. Kwok, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley & Sons, Inc., 2006).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. S. Dmitriev
    • 1
  • L. B. Dmitrieva
    • 1
  • E. Ya. Shvets
    • 1
  1. 1.Zaporozhye State Engineering AcademyZaporizhzhyaUkraine

Personalised recommendations