Solid Fuel Chemistry

, Volume 52, Issue 2, pp 86–90 | Cite as

Stability of Calcium Chloride in the Air–Steam Gasification of Solid Fuel in Filtration Mode

  • M. V. Tsvetkov
  • E. V. Polianczyk
  • A. Yu. Zaichenko
  • Yu. Yu. Tsvetkova
  • D. N. Podlesniy


The emission of HCl from calcium chloride during the air–steam gasification of solid fuel in the filtration combustion mode was studied. The limiting amounts of HCl released into the gas phase under real conditions of a shaft kiln gasifier were estimated. It was shown that the most important factors responsible for the stability of CaCl2 are the humidity of an oxidant gas and the process temperature.


calcium chloride thermodynamic calculations filtration combustion gasification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gould, O.E., US Patent 4732091, 1988.Google Scholar
  2. 2.
    Addink, K., Bakker, W.C.M., and Olie, K., Environ. Sci. Technol., 1995, vol. 29, p. 2055.CrossRefGoogle Scholar
  3. 3.
    Glazov, S.V. and Polianczyk, E.V., Combust. Explos. Shock Waves, 2015, vol. 51, no. 5, p. 540.CrossRefGoogle Scholar
  4. 4.
    Kolesnikova, Yu.Yu., Kislov, V.M., and Salgansky, E.A., Russ. J. Phys. Chem. B, 2016, vol. 10, no. 5, p. 791.CrossRefGoogle Scholar
  5. 5.
    Salgansky, E.A., Zaichenko, A.Yu., Podlesniy, D.N., Salganskaya, M.V., and Tsvetkov, M.V., Fuel, 2017, vol. 210, p. 491.CrossRefGoogle Scholar
  6. 6.
    Balabaeva, E.M., Korshunova, L.A., Manelis, G.B., Polianchik, E.V., and Tsvetkov, M.V., Int. J. Sci. Alter. Energy Ecol., 2009, vol. 76, no. 8, p. 190.Google Scholar
  7. 7.
    Tsvetkov, M.V., Zaichenko, A.Yu., and Zhirnov, A.A., Theor. Found. Chem. Eng., 2013, vol. 47, no. 5, p. 608.CrossRefGoogle Scholar
  8. 8.
    Tsvetkov, M.V., Cand. Sci. (Chem.) Dissertation, Chernogolovka: Inst. Probl. Chem. Phys., Russ. Acad. Sci., 2010.Google Scholar
  9. 9.
    Weinell, C.E., Jensen, P.I., Dam-Johansen, K., and Livbjerg, H., Ind. Eng. Chem. Res., 1992, vol. 31, p. 164.CrossRefGoogle Scholar
  10. 10.
    Matsukata, M., Takeda, K., Miyatani, T., and Ueyama, K., Chem. Eng. Sci., 1996, vol. 51, p. 2529.CrossRefGoogle Scholar
  11. 11.
    Partanen, J., Backman, P., Backman, R., and Hupa, M., Fuel, 2005, vol. 84, p. 1664.Google Scholar
  12. 12.
    Wang, W., Zhicheng, Y., and Bjerle, I., Fuel, 1996, vol. 75, p. 207.CrossRefGoogle Scholar
  13. 13.
    Trusov, B.G., Abstracts of Papers, XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, 2002, p. 483.Google Scholar
  14. 14.
    Zaichenko, A.Yu., Zhirnov, A.A., Manelis, G.B., Polianchik, E.V., and Zholudev, A.F., Theor. Found. Chem. Eng., 2010, vol. 44, no. 1, p. 30.CrossRefGoogle Scholar
  15. 15.
    Salgansky, E.A., Kislov, V.M., Glazov, S.V., and Salganskaya, M.V., J. Combustion, 2016. vol. 3, no. 5.Google Scholar
  16. 16.
    Kislov, V.M., Salganskii, E.A., Tsvetkov, M.V., and Tsvetkova, Yu.Yu., Russ. J. Appl. Chem., 2017, vol. 90, no. 5, p. 716.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. V. Tsvetkov
    • 1
  • E. V. Polianczyk
    • 1
  • A. Yu. Zaichenko
    • 1
  • Yu. Yu. Tsvetkova
    • 1
  • D. N. Podlesniy
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations