Solid Fuel Chemistry

, Volume 51, Issue 2, pp 83–87 | Cite as

Thermogravimetric and kinetic analyses of the thermal decomposition of fuel wood

Article
  • 33 Downloads

Abstract

The results of studies of the thermal transformations of granulated wood biofuel performed by thermogravimetry and differential scanning calorimetry in an atmosphere of argon at heating rates of 5, 10, 20, and 30 K/min are reported in this paper. The results of the analysis were used for the determination of the preexponential factor and activation energy of the thermal decomposition of wood biofuel based on the Kissinger, Kissinger–Akahira–Sunose, and Ozava–Flynn–Wall isoconversion model-free methods. The values of activation energy for the release of volatile substances in the course of the thermal decomposition of wood granules varied in ranges of 87–250 and 76–242 kJ/mol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mar’yandyshev, P.A., Cand. Sci. (Eng.) Dissertation, Arkhangel’sk: Northern (Arctic) Fed. Univ., 2015.Google Scholar
  2. 2.
    Slopiecka, K., Bartocci, P., and Fantozzi, F., Applied Energy, 2012, p. 491.Google Scholar
  3. 3.
    Lam, K.L., Oyedun, A.O., and Hui, C.W., Chinese J. Chem. Eng., 2012, no. 3, p. 543.CrossRefGoogle Scholar
  4. 4.
    Ferapontov, Yu.A., Putin, S.B., Ferapontova, L.L., and Putin, P.Yu., Vestn. TGTU, 2009, vol. 15, no. 4, p. 826.Google Scholar
  5. 5.
    Lyubov, V.K., Povyshenie effektivnosti energeticheskogo ispol’zovaniya biotopliv (Enhancement of the Efficiency of the Power-Generating Use of Biofuels), Arkhangel’sk: Solti, 2010.Google Scholar
  6. 6.
    Lv, G., Wu, Sh., and Lou, R., BioResources, 2010, no. 2, p. 1281.Google Scholar
  7. 7.
    Mar’yandyshev, P.A., Chernov, A.A., and Lyubov, V.K., Mezhdunar. Zh. Eksperim. Obraz., 2014, no. 3, p. 29.Google Scholar
  8. 8.
    Wendlandt, W., Thermal Methods of Analysis, New York: Wiley, 1974.Google Scholar
  9. 9.
    Gasparovic, L., Korenova, Z., and Jelemensky, L., 36th Int. Conf. SSCHE, Tatransk’e Matliare, 2009, p. 178.Google Scholar
  10. 10.
    Gonchikzhapov, M.B., Paletskii, A.A., and Korobeinichev, O.P., Sb. tr., VIII Vseross. konf. “Gorenie tverdogo topliva” (Proc. VIII All-Russia Conf. Solid Fuel Combustion), Novosibirsk, 2012, p. 35.Google Scholar
  11. 11.
    Al’myashev, V.I. and Gusarov, V.V., Termicheskie metody analiza (Thermal Methods of Analysis), St. Petersburg: SPbGETU, 1999.Google Scholar
  12. 12.
    Poletto, M., Zattera, A.J., and Santana, R.M.C., Bioresource Technol., 2012, vol. 126, p. 7.CrossRefGoogle Scholar
  13. 13.
    Kissinger, H., J. Res. Nat. Bureau Stand., 1956, vol. 57, no. 4, p. 217.CrossRefGoogle Scholar
  14. 14.
    Akahira, T. and Sunose, T., Sci. Technol., 1971, vol. 16, p. 22.Google Scholar
  15. 15.
    Flynn, J.H. and Wall, L.A., J. Res. Nat. Bureau Stand., 1966, vol. 70A, p. 487.CrossRefGoogle Scholar
  16. 16.
    Ozawa, T., Bull. Chem. Soc., 1965, vol. 38, p. 1881.CrossRefGoogle Scholar
  17. 17.
    Marquez-Montesino, F., Correa-Mendez, F., Glauco-Sanchez, C., Zanzi-Vigouroux, R., Rutiaga-Quinones, J.G., and Aguiar-Trujillo, L., BioResources, 2015, vol. 19, no. 1, p. 1825.Google Scholar
  18. 18.
    Jin, W., Singh, K., and Zondlo, J., Agriculture, 2013, vol. 3, p. 12.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Kazan Scientific CenterRussian Academy of SciencesKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations