Scientific and Technical Information Processing

, Volume 44, Issue 6, pp 412–423 | Cite as

Semantic-Syntactic Analysis for Question Answering and Definition Extraction

  • A. O. Shelmanov
  • M. A. Kamenskaya
  • M. I. Ananyeva
  • I. V. Smirnov


This paper studies the contribution of semantic and semantic–syntactic analysis to the effectiveness of solving applied text-processing tasks: question answering and extraction of definitions from scientific publications. Methods for solving these problems, which, in addition to morphological and syntactic structures, also use semantic structures of texts, are presented. We carried out the experimental evaluation of these methods and comparison of two approaches to syntactic and semantic analysis: separate and joint semantic–syntactic parsing.


semantic parsing joint semantic–syntactic parsing question answering information extraction extraction of definitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osipov, G.S., Smirnov, I.V., and Tikhomirov, I.A., Relational-situational method for text search and analysis and its applications, Sci. Tech. Inf. Process., 2010, vol. 37, no. 6, pp. 432–437.CrossRefGoogle Scholar
  2. 2.
    Tikhomirov, I.A., Smirnov, I.V. and Sochenkov, I.V., Exactus Expert: Search and analytical system for support of scientific and technical activity, Trudy trinadtsatoi natsional’noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2012 (Proc. Thirteenth National Conference on Artificial Intelligence with International Participation KII-2012), 2012, vol. 4, pp. 100–108.Google Scholar
  3. 3.
    Osipov, G., Methods for extracting semantic types of natural language statements from texts, 10th IEEE International Symposium on Intelligent Control, Monterey, CA, 1995.Google Scholar
  4. 4.
    Zolotova, G.A., Onipenko, N.K., and Sidorova, M.Yu., Communicative Grammar of the Russian Language, Inst. russ. yazyka RAN im. V. V. Vinogradova, 2004.Google Scholar
  5. 5.
    Gildea, D. and Jurafsky, D., Automatic labeling of semantic roles, Comput. Linguist., 2002, vol. 28, no. 3, pp. 245–288.CrossRefGoogle Scholar
  6. 6.
    Testelets, Ya.G., Vvedenie v obshchii sintaksis (Introduction to General Syntax), Moscow: Izd. RGGU, 2001.Google Scholar
  7. 7.
    Smirnov, I.V., Shelmanov, A.O., Kuznetsova, E.S., and Khramoin, I.V., Semantico-syntactic analysis of natural languages. Part II. Method of semantic-syntactic analysis of texts, Iskusstv. Intell. Prinyatie Reshenii, 2014, no. 1, pp. 11–24.Google Scholar
  8. 8.
    Shelmanov, A.O. and Smirnov, I.V., Methods for semantic role labeling of Russian texts, Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference Dialogue 2014, 2014, no. 13, pp. 607–620.Google Scholar
  9. 9.
    Osipov, G.S. and Shelmanov, A.O., Method of improving the quality of syntactic analysis based on the interaction of syntactic and semantic rules, Trudy shestoi mezhdunarodnoi konferentsii “Sistemnyi analiz i informatsionnye tekhnologii” (SAIT) (Proc. Sixth Int. Conf. System Analysis and Information Technologies (SAIT)), 2015, vol. 1, pp. 229–240.Google Scholar
  10. 10.
    Boguslavsky, I., Dikonov, V., Iomdin, L., et al., Semantic analysis and question answering: A system under development, Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference Dialogue 2015, 2015, pp. 62–79.Google Scholar
  11. 11.
    Yao, X. and Van Durme, B., Information extraction over structured data: Question answering with freebase, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Association For Computational Linguistics, 2014, pp. 956–966.Google Scholar
  12. 12.
    Voorhees, E.M., et al., The TREC-8 question answering track report, TREC, 1999, vol. 99, pp. 77–82.Google Scholar
  13. 13.
    Ferrucci, D., Brown, E., Chu-Carroll, J., et al., Building Watson: An overview of the DeepQA project, AI Mag., 2010, vol. 31, no. 3, pp. 59–79.CrossRefGoogle Scholar
  14. 14.
    Min Wu, Michelle Duan, Samira Shaikh, et al., ILQUAan IE-driven question answering system, TREC, 2005.Google Scholar
  15. 15.
    Shen, D. and Klakow, D., Exploring correlation of dependency relation paths for answer extraction, Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2006, pp. 889–896.Google Scholar
  16. 16.
    Galitsky, B., Ilvovsky, D., Kuznetsov, S., and Strok, F., Matching sets of parse trees for answering multi-sentence questions, Proceedings of Recent Advances in Natural Language Processing (RANLP 2013), 2013, pp. 285–293.Google Scholar
  17. 17.
    Ogarok, A., Stokona at ROMIP-2006, Trudy ROMIP’2006 (Proc. ROMIP’2006), 2006, pp. 86–91.Google Scholar
  18. 18.
    Nekrest’yanov, I. and Nekrest’yanova, M., ROMIP’2006: Report from organizers, Trudy ROMIP’2006 (Proc. ROMIP’2006), 2006, pp. 7–29.Google Scholar
  19. 19.
    Shen, D. and Lapata, M., Using semantic roles to improve question answering, EMNLP-CoNLL, 2007, pp. 12–21.Google Scholar
  20. 20.
    Pizzato, L.A. and Mollá, D., Indexing on semantic roles for question answering, Coling 2008: Proceedings of the 2nd Workshop on Information Retrieval for Question Answering, Association for Computational Linguistics, 2008, pp. 74–81.CrossRefGoogle Scholar
  21. 21.
    Moreda, P., Llorens, H., Saquete, E., and Palomar, M., Combining semantic information in question answering systems, Inf. Process. Manage., 2011, vol. 47, no. 6, pp. 870–885.CrossRefGoogle Scholar
  22. 22.
    Vasil’eva, N.E., Templates for the use of terms and their application in automatic processing of scientific and technical texts, Trudy mezhdunarodnoi konferentsii “Dialog 2004” (Proc. Int. Conf. Dialogue 2004), 2004, pp. 96–101.Google Scholar
  23. 23.
    Bol'shakova, E.I. and Noskov, A.A., Software for text analysis based on LSPL lexico-syntactic templates, Progr. Sist. Instr.: Temat. Sb., 2010, no. 11, pp. 61–73.Google Scholar
  24. 24.
    Efremova, N.E., Bol’shakova, E.I., Noskov, A.A., and Antonov, V.Yu., Terminological analysis of the text on the basis of lexico-syntactic templates, Trudy mezhdunarodnoi konferentsii “Dialog 2010" (Proc. Int. Conf. Dialogue 2010), Moscow: Izd. RGGU, 2010, pp. 124–129.Google Scholar
  25. 25.
    Bol'shakova, E.I., Language of lexico-syntactic templates LSPL: Experience of use and ways of development, Progr. Sist. Instr.: Temat. Sb., 2014, no. 15, pp. 15–26.Google Scholar
  26. 26.
    Nivre, J., Hall, J., Nilsson, J., et al., MaltParser: A language-independent system for data-driven dependency parsing, Nat. Lang. Eng., 2007, vol. 13, no. 2, pp. 95–135.Google Scholar
  27. 27.
    Agarwal, A., Raghavan, H., Subbian, K., et al., Learning to rank for robust question answering, Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 833–842.Google Scholar
  28. 28.
    Dang, H.T., Kelly, D., and Lin, J.J., Overview of the TREC 2007 question answering track, Proceedings of The Sixteenth Text REtrieval Conference, TREC 2007, 2007.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. O. Shelmanov
    • 1
  • M. A. Kamenskaya
    • 1
  • M. I. Ananyeva
    • 1
  • I. V. Smirnov
    • 1
  1. 1.Institute for Systems Analysis, Federal Research Center Computer Science and ControlRussian Academy of SciencesMoscowRussia

Personalised recommendations