Advertisement

Scientific and Technical Information Processing

, Volume 44, Issue 6, pp 440–449 | Cite as

The Inverse Bin-Packing Problem Subject to Qualitative Criteria

  • E. M. Furems
Article
  • 20 Downloads

Abstract

A new formulation of the reverse bin-packing problem is suggested. One distinct feature of the new formulation is that it takes into account of a decision-maker’s preferences for a set of objects that are evaluated by multiple quality criteria. The aspects of this problem are discussed that relate to the theory of multiple criteria decision making. The known methods for solving the classic and the reverse bin-packing problems (the multiple knapsack problem) are reviewed.

Keywords

inverse bin-packing problem preference relation ordinal classification approximate algorithm branch and bound method genetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martello, S. and Toth, P., Solution of the zero-one multiple knapsack problem, Eur. J. Oper. Res., 1980, vol. 4, no. 4, pp. 276–283.CrossRefzbMATHGoogle Scholar
  2. 2.
    Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., and Graham, R.L., Worst-case performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 1974, vol. 3, no. 4, pp. 299–325.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Coffman, E.G., Jr., Leung, J.Y.-T., and Ting, D., Bin packing: Maximizing the number of pieces packed, Acta Inf., 1978, vol. 9, pp. 263–271.Google Scholar
  4. 4.
    Coffman, E.G., Jr., E.G. and Leung, J.Y., Combinatorial analysis of an efficient algorithm for processor and storage allocation, SIAM J. Comput., 1979, vol. 8, no. 2, pp. 202–217.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., and Kan, A.R., Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 1979, vol. 5, pp. 287–326.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Garey, M.R., Graham, R.L., Johnson, D.S., and Yao, A.C.C., Resource constrained scheduling as generalized bin packing, J. Comb. Theory, Ser. A, 1976, vol. 21, no. 3, pp. 257–298.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Garey, M.R., Graham, R.L., and Johnson, D.S., Performance guarantees for scheduling algorithms, Oper. Res., 1978, vol. 26, no. 1, pp. 3–21.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dell'Amico, M., Díaz, J.C.D., and Iori, M., The bin packing problem with precedence constraints, Oper. Res., 2012, vol. 60, no. 6, pp. 1491–1504.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Furems, E.M., Packaging models in multi-criteria decision-making problems with limited resources, Preprint of VNIISI, Moscow, 1986.Google Scholar
  10. 10.
    Karp, R.M., Reducibility among combinatorial problems, in Complexity of Computer Computations, Miller, R.E. and Thatcher, J.M., Eds., Plenum Press, 1972, pp. 85–103.Google Scholar
  11. 11.
    Geri, M. and Dzhonson, D., Vychislitel’nye mashiny i trudnoreshaemye zadachi (Computing Machines and Hard-To-Solve Problems), Moscow: Mir, 1982.Google Scholar
  12. 12.
    Dyckhoff, H. and Finke, U., Cutting and Packing in Production and Distribution: A Typology and Bibliography, Berlin: Springer, 1992.CrossRefGoogle Scholar
  13. 13.
    Wäscher, G., Hausner, H., and Schumann, H., An improved typology of cutting and packing problems, EJOR, 2007, vol. 183, no. 3, pp. 1109–1130.CrossRefzbMATHGoogle Scholar
  14. 14.
    Chung, F.R., Garey, M.R., and Johnson, D.S., On packing two-dimensional bins, SIAM J. Algebraic Discrete Methods, 1982, 3, no. 1, pp. 66–76.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Berkey, J.O. and Wang, P.Y., Two-dimensional finite bin-packing algorithms, J. Oper. Res. Soc., 1987, pp. 423–429.Google Scholar
  16. 16.
    Gimadi, E.Kh., Zalyubovskii, V.V., and Sharygin, P.I., The problem of packing in a strip: An asymptotically exact approach, Izv. Vyssh. Uch. Zaved., Mat., 1997, no. 12, pp. 34–44.Google Scholar
  17. 17.
    Lodi, A., Martello, S., and Vigo, D., Approximation algorithms for the oriented two-dimensional bin packing problem, EJOR, 1999, vol. 112, no. 1, pp. 158–166.CrossRefzbMATHGoogle Scholar
  18. 18.
    Dell'Amico, M., Martello, S., and Vigo, D., A lower bound for the non-oriented two-dimensional bin packing problem, Discrete Appl. Math., 2002, vol. 118, nos. 1–2, pp. 13–24.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lodi, A., Martello, S., and Vigo, D., Recent advances on two-dimensional bin packing problems, Discrete Appl. Math., 2002, vol. 123, nos. 1–3, pp. 379–396.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lodi, A., Martello, S., and Vigo, D., Heuristic algorithms for the three-dimensional bin packing problem, EJOR, 2002, vol. 141, no. 2, pp. 410–420.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lodi, A., Martello, S., and Vigo, D., TSpack: A unified tabu search code for multi-dimensional bin packing problems, Ann. OR, 2004, vol. 131, nos. 1–4, pp. 203–213.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lodi, A., Martello, S., and Vigo, D., Models and bounds for two-dimensional level packing problems, J. Comb. Optim., 2004, vol. 8, no. 3, pp. 363–379.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    den Boef, E., Korst, J., Martello, S., Pisinger, D., and Vigo, D., Erratum to 'The three-dimensional bin packing problem’: Robot-packable and orthogonal variants of packing problems, Oper. Res., 2005, vol. 53, no. 4, pp. 735–736.CrossRefzbMATHGoogle Scholar
  24. 24.
    Bansal, N. and Khan, A., Improved approximation algorithm for two-dimensional bin packing, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 2014, pp. 13–25.CrossRefGoogle Scholar
  25. 25.
    Valeeva, A.F., Application of meta-heuristics of the ant colony to the problems of two-dimensional packaging, Inf. Tekhnol., 2005, no. 10, pp. 36–43.Google Scholar
  26. 26.
    Mukhacheva, E.A., Valeeva, A.F., Filippova, A.S., and Polyakovskii, S.Yu., The problem of two-dimensional container packaging: Lower bounds and a numerical experiment with algorithms for local optimum search, Inf. Tekhnol., 2006, no. 4, pp. 45–52.Google Scholar
  27. 27.
    López-Camacho, E., et al., An effective heuristic for the two-dimensional irregular bin packing problem, Ann. Oper. Res., 2013, vol. 206, no. 1, pp. 241–264.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lins, L., Lins, S., and Morabito, R., An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container, EJOR, 2002, vol. 141, pp. 421–439.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Coffman, E.G., Jr., Garey, M.R., and Johnson, D.S., Dynamic bin packing, SIAM J. Comput., 1993, vol. 12, pp. 227–258.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rhee, W.T. and Talagrand, M., On-line bin packing with items of random size, Math. Oper. Res., 1993, vol. 18, pp. 438–445.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Boyar, J., Fayholdt, L.M., Larsen, K.S., and Nielsen, M.N., The competitive ratio for on-line dual bin packing with restricted input sequences, Nordic J. Comput., 2001, vol. 8, pp. 463–472.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Boyar, J., et al., Online bin packing with advice, Algorithmica, 2014, pp. 1–21.Google Scholar
  33. 33.
    Delorme, M., Iori, M., and Martello, S., Bin packing and cutting stock problems: Mathematical models and exact algorithms, AIRO 2014 Conference, 2015, p. 77.Google Scholar
  34. 34.
    Simon, H., The New Science of Management Decision, New York: Harper and Row, 1960.CrossRefGoogle Scholar
  35. 35.
    Saaty, T. and Shihb, H.-S., Structures in decision making: On the subjective geometry of hierarchies and networks, EJOR, 2009, vol. 199, no. 3, pp. 867–872.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    von Winterfeldt, D., Structuring decision problems for decision analysis, ActaPsychologica, 1980, vol. 45, pp. 71–93.Google Scholar
  37. 37.
    Wallenius, J., Dyer, J., Fishburn, P., Steuer, R., Zionts, S., and Deb, K., Multiple criteria decision making, multiattribute utility analysis: Recent accomplishments and what lies ahead, Manage. Sci., 2008, vol. 54, no. 7, pp. 1336–1349.CrossRefzbMATHGoogle Scholar
  38. 38.
    Furems, E.M., Structuring of classification problems based on knowledge, Inf. Tekhnol. Vychisl. Sist., 2007, no. 3, pp. 7–17.Google Scholar
  39. 39.
    Furems, E.M., Domain Structuring for Knowledge-Based Multiattribute Classification (A Verbal Decision Analysis Approach), Berlin/Heidelberg: Springer, 2011, vol. 19, pp. 402–420.MathSciNetzbMATHGoogle Scholar
  40. 40.
    Furems, E.M., Stepclass-based approach to multicriteria sorting, Sci. Tech. Inf. Process., 2015, vol. 42, no. 6, pp. 481–489.CrossRefGoogle Scholar
  41. 41.
    Larichev, O.I. and Moshkovich, E.M., Kachestvennye metody prinyatiya reshenii (Qualitative Methods of Decision-Making), Moscow: Fizmatlit, 1996.zbMATHGoogle Scholar
  42. 42.
    Ashikhmin, I., Furems, E., Petrovsky, A., and Sternin, M., Intelligent DSS under verbal decision analysis, in Encyclopedia of Decision Making and Decision Support Technologies, Frederic Adam, Ed., Hershey, 2008, vol. 2, pp. 514–527.Google Scholar
  43. 43.
    Ashikhmin, I. and Furems, E., UniComBOS: Intelligent decision support system for multi-criteria comparison and choice, J. Multi-Criteria Decision Anal., 2005, vol. 13, nos. 2–3, pp. 147–157.CrossRefGoogle Scholar
  44. 44.
    Goodman, S.E. and Hedetniemi, S.T., Introduction to the Design and Analysis of Algorithms, McGraw-Hill, 1977.Google Scholar
  45. 45.
    Marshal, L. and Fisher, M.S., Worst-case analysis of heuristics algorithms, Manage. Sci., 1980, vol. 26, no. 1, pp. 1–8.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Coffman, Jr., Garey, M.R., and Johnson, D.S., Approximation algorithms for bin-packing—an updated survey, in Algorithm Design for Computer System Design, Vienna: Springer, 1984, pp. 49–106.Google Scholar
  47. 47.
    Johnson, D.S., Fast algorithms for bin packing, J. Comput. Syst. Sci., 1974, vol. 8. no. 3, pp. 272–314.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ullman, J.D., The performance of a memory allocation algorithm, in Technical Report 100, Princeton, NJ: Princeton Univ., 1971.Google Scholar
  49. 49.
    Garey, M.R., Graham, R.L., and Ullman, J.D., Worstcase analysis of memory allocation algorithms, Proc. 4th Symp. Theory of Computing (STOC), 1973, pp. 143–150.Google Scholar
  50. 50.
    Dósa, G. and Sigall, J., Optimal analysis of Best Fit bin packing, in Automata, Languages, and Programming, Berlin Heidelberg: Springer, 2014, pp. 429–441.Google Scholar
  51. 51.
    Coffman, Jr., Garey, M.R., and Johnson, D.S., An application of bin packing to multiprocessor scheduling, SIAM J. Comput., 1978, vol. 7, no. 1, pp. 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Chi-Chin Yao, New algorithms for bin packing, J. Assoc. Comput. Mach., 1980, vol. 27, no. 2, pp. 207–227.MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Frederickson, G.N., Probabilistic analysis for simple one-and two-dimensional bin packing algorithms, Inf. Process. Lett., 1980, vol. 11, nos. 4–5, pp. 156–161.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    de Carvalho, J.M., LP models for bin packing and cutting stock problems, EJOR, 2002, vol. 141, no. 2, pp. 253–273.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Eilon, S. and Christofides, N., The loading problem, Manage. Sci., 1990, vol. 17, pp. 259–267.CrossRefzbMATHGoogle Scholar
  56. 56.
    Martello, S. and Toth, P., Bin-packing problem, in Knapsack Problems: Algorithms and Computer Implementations, Wiley, 1990, ch. 8, pp. 221–245.Google Scholar
  57. 57.
    Martello, S. and Toth, P., Lower bounds and reduction procedures for the bin packing problem, Discrete Appl. Math., 1990, vol. 28, pp. 59–70.MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Korf, R.E., A new algorithm for optimal bin packing, in AAAI/IAAI, 2002, pp. 731–736.Google Scholar
  59. 59.
    Scholl, A., Klein, R., and Jürgens, C., BISON: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem, Comput. Oper. Res., 1997, vol. 24, pp. 627–645.CrossRefzbMATHGoogle Scholar
  60. 60.
    de Carvalho, J.M., Exact solution of bin-packing problems using column generation and branch-and-bound, Ann. Oper. Res., 1999, vol. 86, pp. 629–659.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Fukunaga, A.S. and Korf, R.E., Bin completion algorithms for multicontainer packing, knapsack, and covering problems, J. Artif. Intell. Res., 2007, vol. 28, pp. 393–429.MathSciNetzbMATHGoogle Scholar
  62. 62.
    Schreiber, E.L. and Korf, R.E., Improved bin completion for optimal bin packing and number partitioning, in IJCAI, 2013.Google Scholar
  63. 63.
    Martello, S. and Toth, P., A bound and bound algorithm for the zero-one multiple knapsack problem, Discrete Appl. Math., 1981, vol. 3, pp. 275–288.MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Pisinger, D., An exact algorithm for large multiple knapsack problems, EJOR, 1999, vol. 114, pp. 528–541.CrossRefzbMATHGoogle Scholar
  65. 65.
    Martello, S. and Toth, P., An upper bound for the zeroone knapsack problem and a branch and bound algorithm, EJOR, 1977, vol. 1, pp. 169–175.CrossRefzbMATHGoogle Scholar
  66. 66.
    Smith D., Bin-packing with adaptive search, Proceedings of an International Conference on Genetic Algorithms and Their Applications, Lawrence Erlbaum, 1985, pp. 202–206.Google Scholar
  67. 67.
    Prosser P., A hybrid genetic algorithm for pallet loading, in ECAI 88 Proceedings 8th European Conference on Artificial Intelligence, Radig, B., Ed., London: Pitman, 1988, pp. 159–164.Google Scholar
  68. 68.
    Falkenauer, E. and Delchambre, A., A genetic algorithm for bin-packing and line balancing, Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, 1992, vol. 2, pp. 1186–1192.CrossRefGoogle Scholar
  69. 69.
    Falkenauer, E., A hybrid grouping genetic algorithm for bin packing, J. Heuristics, 1996, vol. 2, no. 1, pp. 5–30.CrossRefGoogle Scholar
  70. 70.
    Reeves, C., Hybrid genetic algorithms for bin-packing and related problems, Ann. Oper. Res., 1996, vol. 63, no. 3, pp. 371–396.CrossRefzbMATHGoogle Scholar
  71. 71.
    Ross, P., Marín-Blázquez, J.G., Schulenburg, S., and Hart, E., Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics, Cant.u-Paz, E. et al., Eds., Berlin Heidelberg: Springer-Verlag, 2003, pp. 1295–1306.zbMATHGoogle Scholar
  72. 72.
    Djang, P.A. and Finch, P.R., Solving one dimensional bin packing problems, J. Heuristics, 1998, pp. 123–144.Google Scholar
  73. 73.
    Sim, K., Hart, E., and Paechter, B., A Hyper-Heuristic Classifier for One Dimensional Bin Packing Problems: Improving Classification Accuracy by Attribute Evolution, Coello Coello, et al. Eds., Berlin Heidelberg: Springer-Verlag, 2012, pp. 348–357.Google Scholar
  74. 74.
    Quiroz-Castellanos, M., et al., A grouping genetic algorithm with controlled gene transmission for the bin packing problem, Comput. Oper. Res., 2015, vol. 55, pp. 52–64.MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Khuri, S., Bäck, T., and Heitkötter, J., The zero/one multiple knapsack problem and genetic algorithms, Proceedings of the 1994 ACM Symposium on Applied Computing, 1994, pp. 188–193.CrossRefGoogle Scholar
  76. 76.
    Michalewicz, Z. and Arabas, J., Genetic algorithms for the 0/1 knapsack problem, in Methodologies for Intelligent Systems, Berlin Heidelberg: Springer, 1994, pp. 134–143.CrossRefGoogle Scholar
  77. 77.
    Cotta, C. and Troya, J.M., A hybrid genetic algorithm for the 0-1 multiple knapsack problem, in Artificial Neural Nets and Genetic Algorithms, Vienna: Springer, 1998, pp. 250–254.CrossRefGoogle Scholar
  78. 78.
    André, L. and Stubs Parpinelli, R., The multiple knapsack problem approached by a binary differential evolution algorithm with adaptive parameters, Polibits, 2015, vol. 51, pp. 47–54.CrossRefGoogle Scholar
  79. 79.
    Krause, J., Parpinelli, R.S., and Lopes, H.S., Proposta de um algoritmo inspirado em evolucao diferencial aplicado ao problema multidimensional da mochila, Anais do IX Encontro Nacional de Inteligencia Artificial-ENIA, Curitiba, PR: SBC, 2012.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Institute for Systems Analysis, Computer Science and Control Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations