Advertisement

Scientific and Technical Information Processing

, Volume 44, Issue 6, pp 397–405 | Cite as

Tools for Automatically Finding and Visualizing Interest Areas in MRI Data to Support Decision Making by Medical Researchers

  • V. P. Fralenko
  • M. V. Khachumov
  • M. V. Shustova
Article
  • 10 Downloads

Abstract

This article gives a detailed description of the techniques developed by the authors for primary and deep processing of magnetic-resonance imaging that are aimed at detecting areas of ischemic lesion in the rat brain. The tools include the techniques for bringing MRI images of different samples to the normalized form (size, shape, and brightness). Another set of tools is associated with the detection of anomalies based on T2 and MDC images using artificial neural networks and specific metrics. It is assumed that the created algorithms and programs will be part of the developed research software system that is oriented to support decision making by medical researchers.

Keywords

magnetic resonance tomography brain ischemic lesion image recognition visualization metric convolutional neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NITRC: Robust Brain Extraction (ROBEX): Tool/Resource Info. http://www.nitrc.org/projects/robex. Cited July 26, 2016.Google Scholar
  2. 2.
    BET–FslWiki. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET. Cited July 26, 2016.Google Scholar
  3. 3.
    NiftySeg-TIG. http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg. Cited July 26, 2016.Google Scholar
  4. 4.
    Cabezas, M., Oliver, A., Llado, X., Freixenet, J., and Cuadra, M.B., A review of atlas-based segmentation for magnetic resonance brain images, Comput. Methods Progr. Biomed., 2011, no. 12, pp. 314–355.Google Scholar
  5. 5.
    Wei Huang, Automatic affine and elastic registration strategies for multi-dimensional medical images, A Dissertation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Worcester Polytechnic Institute, 2007.Google Scholar
  6. 6.
    Khachumov, M.V., Algorithms of integer arithmetic in problems of calculating trajectory motion, Sbornik nauchnykh trudov II Vserossiiskogo nauchno-prakticheskogo seminara “Bespilotnye transportnye sredstva elementami iskusstvennogo intellekta” (BTS-II-2015) (8–9 oktyabrya 2015 g. (Proc. II All-Russ. Sci. Pract. Seminar Unmanned Vehicles with Artificial Intelligence Elements (BTS-II-2015) (October 8–9, 2015, St. Petersburg)), St. Petersburg, 2015, pp. 130–135.Google Scholar
  7. 7.
    Braccini, C., Cocurullo, F., and Lavagetto, F., A fast algorithm for high quality vector quantization codebook design, Proc. 8th International Conference on Image Analysis and Processing, London: Springer-Verlag, 1995, pp. 643–648.Google Scholar
  8. 8.
    Abbadi, N.K., Dahir, N.S., and Alkareem, Z.A., Skin texture recognition using neural networks, Proc. Int’l Arab Conf. on Information Technology, 2008, pp. 1–4.Google Scholar
  9. 9.
    Haralick, R.M., Shanmugam, K., and Dinstein, I., Textural features for image classification, IEEE Trans. Syst. Man Cybern., 1973, vol. 3, pp. 610–621.CrossRefGoogle Scholar
  10. 10.
    Amel'kin, S.A., Zakharov, A.V., and Khachumov, V.M., The generalized distance of Euclid-Mahalanobis and its properties, Inf. Tekhnol. Vychisl. Sist., 2006, no. 4, pp. 40–44.Google Scholar
  11. 11.
    Jones, D.K., Diffusion MRI: Theory, Methods, and Applications, New York: Oxford University Press, 2011.Google Scholar
  12. 12.
    Talalaev, A.A., Tishchenko, I.P., Fralenko, V.P., and Khachumov, V.M., Analysis of the efficiency of applying artificial neuron networks for solving recognition, compression, and prediction problems, Sci. Tech. Inf. Process., 2011, vol. 38, no. 5, pp. 313–321.CrossRefGoogle Scholar
  13. 13.
    Khachumov, M.V., Application of artificial neural networks for the automatic classification of the degree of disease, Sbornik nauchnykh trudov po materialam III Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Teoreticheskie i prikladnye aspekty sovremennoi nauki” (Belgorod, 30 sentyabrya 2014) (Proc. III Int. Sci. Pract. Conf. Theoretical and Applied Aspects of Modern Science (Belgorod, September 30, 2014)), 2014, part 1, pp. 203–208.Google Scholar
  14. 14.
    Molodchenkov, A.I., Fralenko, V.P., and Khachumov, V.M., Classification of severity of the disease on the basis of artificial neural networks, Vestn. RUDN, Ser. Mat. Inf. Fiz., 2014, no. 2, pp. 150–156.Google Scholar
  15. 15.
    LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444.CrossRefGoogle Scholar
  16. 16.
    Maxout Networks. http://colinraffel.com/wiki/maxout_ networks. Cited July 26, 2016.Google Scholar
  17. 17.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 2014. www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf. Cited July 26, 2016.zbMATHGoogle Scholar
  18. 18.
    GitHub–milakov/nnForge: Convolutional neural networks C++ framework with CPU and GPU (CUDA) backends. https://github.com/milakov/nnForge. Cited July 26, 2016.Google Scholar
  19. 19.
    Lebedev, A.S., Fralenko, V.P., Chen, G.S., and Chzhan, G.L., Experimental study of the problem of searching for complex rigid objects in the space images processing system PS NSKiD, Sovrem. Probl. Nauki Obraz., 2015, no. 1. http://www.science-education. ru/pdf/2015/1/1194.pdf. Cited July 26, 2016.Google Scholar
  20. 20.
    Fralenko, V.P., Suvorov, R.E., Ovcharenko, R.I., and Tikhomirov, I.A., Automatic classification of images in problems of content filtering, Inf. Tekhnol. Vychisl. Sist., 2015, no. 3, pp. 3–11.Google Scholar
  21. 21.
    Agronik, A.Yu. and Fralenko, V.P., Library of algorithms for high-performance data processing from the technical vision system of an unmanned aerial vehicle, Progr. Sist.: Teor. Prilozh., 2016, no. 2, pp. 61–71.Google Scholar
  22. 22.
    Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., and Schmidhuber, J., Flexible, high performance convolutional neural networks for image classification, International Joint Conference on Artificial Intelligence, 2011, pp. 1237–1242.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. P. Fralenko
    • 1
  • M. V. Khachumov
    • 2
  • M. V. Shustova
    • 1
  1. 1.Ailamazyan Program Systems Institute, Russian Academy of Sciences, Yaroslavl RegionPereslavl-Zalessky DistrictVeskovo VillageRussia
  2. 2.Institute for Systems Analysis, Computer Science and Control Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations