Scientific and Technical Information Processing

, Volume 44, Issue 6, pp 406–411 | Cite as

On the Complexity of the Reduction of Multidimensional Data Models

  • A. A. Akhrem
  • V. Z. Rakhmankulov
  • K. V. Yuzhanin


In this paper, decomposition methods for multidimensional data hypercubes of OLAP systems are investigated. Criteria for reducing the computational complexity of the decomposition methods are presented and comparisons are made with the traditional solutions of multidimensional data analysis problems. Examples illustrating the application of these criteria to investigating the dynamics of computational complexity changes for specific types of reduction problems are considered.


hypercube hypercube multidimensional data computational complexity and decomposition methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makarov, I.M., Rakhmankulov, V.Z., Akhrem, A.A., and Rovkin, I.O., Investigation of the properties of hypercube structures in OLAP-systems, Inf. Tekhnol. Vychisl. Sist., 2005, no. 2, pp. 4–9.Google Scholar
  2. 2.
    Makarov, I.M., Rakhmankulov, V.Z., Akhrem, A.A., and Rovkin, I.O., Properties of hypercube structures in OLAP-systems, Trudy 1 mezhdunarodnoi nauchnoi konferentsii SAIT-2005 (Proc. 1st Int. Sci. Conf. SAIT-2005), Moscow: KomKniga, 2005, vol. 1, pp. 56–60.Google Scholar
  3. 3.
    Chubukova, I.A., Data Mining, Moscow: Binom, 2008.Google Scholar
  4. 4.
    Palaniappan, S. and Ling, C., Clinical decision support using OLAP with data mining, Int. J. Comput. Sci. Network Secur., 2008, vol. 8, no. 9, pp. 290–296.Google Scholar
  5. 5.
    Krupskii, V.N. and Plisko, V.E., Teoriya algoritmov (Theory of Algorithms), Moscow: Akademiya, 2009.Google Scholar
  6. 6.
    Abramov, S.A., Lektsii o slozhnosti algoritmov (Lectures on the Complexity of Algorithms), Moscow: MTsNMO, 2009.Google Scholar
  7. 7.
    Korobko, A.V. and Pen’kova, T.G., The method of conceptual OLAP-modeling on the basis of formal conceptual analysis, Vestn. Sib. Gos. Aerokosm. Univ. im. akad. M. F. Reshetneva, 2010, vol. 30, no. 4, pp. 74–78.Google Scholar
  8. 8.
    Yuan, C., Lim, H., and Littman, M.L., Most relevant explanation: Computational complexity and approximation methods, Ann. Math. Artif. Intell., 2011, vol. 61, no. 3, pp. 159–183.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gashkov, S.B., The arithmetic computational complexity of linear transforms, Moscow Univ. Math. Bull., 2014, vol. 6, no. 6, pp. 251–257.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Larkin, E.V., Privalov, A.N., and Klepikov, A.K., Algorithm of successive simplifications in estimating the temporal complexity of algorithms using semi-Markov models, Izv. Tul. Gos. Univ., Tekh. Nauki, 2014, no. 9.Google Scholar
  11. 11.
    Il'in, V.A. and Kurkina, A.V., Vysshaya matematika (Further Mathematics), Moscow: Prospekt, 2015.Google Scholar
  12. 12.
    Petrovskii, A.B. and Roizenzon, G.V., Multicriteria choice with decreasing dimensionality of feature space: Multi-stage PAX technology, Iskusstv. Intell. Prinyatie Reshenii, 2012, no. 4, pp. 88–103.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Akhrem
    • 1
  • V. Z. Rakhmankulov
    • 1
  • K. V. Yuzhanin
    • 1
  1. 1.Institute for System Analysis, Computer Science and Control Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations