Advertisement

Scientific and Technical Information Processing

, Volume 44, Issue 5, pp 373–378 | Cite as

A Combined Approach to Reducing the Pareto Set Using Linear or Multiplicative Scalarization

  • V. D. Noghin
Article

Abstract

In this paper, the multicriteria choice problem, including the decision maker’s (DM) binary preference relation, is considered. Two combined two-stage approaches are proposed. According to these approaches, first, we have to reveal some information on the DM’s preference relation and then apply scalarization methods based on linear or multiplicative functions. The justification of both the combined two-stage approaches is given.

Keywords

multicriteria choice axiomatic approach quant of information linear scalarization multiplicative scalarization Edgeworth–Pareto principle Pareto set reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nogin, V.D., The problem of Pareto set reduction: Approaches to solving, Iskusstv. Intell. Prinyatie Reshenii, 2008, no. 1, pp. 98–112.Google Scholar
  2. 2.
    Nogin, V.D., Prinyatie reshenii v mnogokriterial’noi srede: kolichestvennyi podkhod (Decision-making in a Multi-Criteria Environment: A Quantitative Approach), Moscow: Fizmatlit, 2005.Google Scholar
  3. 3.
    Nogin, V.D., Suzhenie mnozhestva Pareto: Aksiomaticheskii podkhod (Pareto Set Reduction: An Axiomatic Approach), Moscow: Fizmatlit, 2016.Google Scholar
  4. 4.
    Noghin, V.D., Linear scalarization in multi-criterion optimization, Sci. Tech. Inf. Process., 2015, vol. 42, no. 6, pp. 463–469.CrossRefGoogle Scholar
  5. 5.
    Noghin, V.D., Generalized Edgeworth–Pareto principle, Comput. Math. Math. Phys., 2015, vol. 55, no. 12, pp. 1975–1980.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Petrovskii, A.B., Teoriya prinyatiya reshenii (Decision-Making Theory), Moscow: Izd. tsentr Akademiya, 2009.Google Scholar
  7. 7.
    Podinovskii, V.V. and Nogin, V.D., Pareto-optimal’nye resheniya mnogokriterial’nykh zadach (Pareto-Optimal Solutions of Multicriteria Problems), Moscow: Fizmatlit, 2007.Google Scholar
  8. 8.
    Trends in Multiple Criteria Decision Analysis, Greco, S., Ehrgott, M., and Figueira, J., Eds., Springer, New York, 2010.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations