Advertisement

Scientific and Technical Information Processing

, Volume 44, Issue 5, pp 365–372 | Cite as

Using Intersection Graphs for Smartphone-Based Document Localization

  • V. V. Arlazarov
  • A. E. Zhukovsky
  • V. E. Krivtsov
  • V. V. Postnikov
Article
  • 13 Downloads

Abstract

This article is devoted to analyzing document localization in images and evaluation of the performance of mobile applications. The analysis is used to propose a new algorithm of document-image capture. The algorithm consists in determining segments of document boundaries and building an intersection graph that complies with a projective rectangle model. According to the evaluation of the performance of the algorithm, its document-localization efficiency is as high as 95% and it outperforms all the reviewed algorithms used in mobile applications.

Keywords

document localization segment detection projective transformation mobile cameras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlazarov, V.V., Zhukovsky, A.E., Krivtsov, V.E., Nikolaev, D.P., and Polevoi, D.V., Analysis of stationary and mobile small-sized digital video cameras usage patterns for document recognition, Inf. Tekhnol. Vychisl. Sist., 2014, vol. 3, pp. 71–81.Google Scholar
  2. 2.
    Liang, J., Doermann, D., and Li, H., Camera-based analysis of text and documents: A survey, Int. J. Doc. Anal. Recognit., 2005, vol. 7, no. 2, pp. 84–104.CrossRefGoogle Scholar
  3. 3.
    Doermann, D., Liang, J., and Li, H., Progress in camera-based document image analysis, IEEE Proc. 7th Int. Conf. on Document Analysis and Recognition, 2003, vol. 1, pp. 606–616.CrossRefGoogle Scholar
  4. 4.
    Burie, J.C., Chazalon, J., Coustaty, M., Eskenazi, S., Luqman, M.M., Mehri, M., Nayef, N., Ogier, J.M., Prum, S., and Rusinol, M., ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc), 13th Int. Conf. on Document Analysis and Recognition, 2015.Google Scholar
  5. 5.
    Chen, F., Carter, S., Denoue, L., and Kumar, J., SmartDCap: Semi-automatic capture of higher quality document images from a smartphone, ACM Proc. of the 2013 Int. Conf. on Intelligent User Interfaces, 2013, p. 287–296.Google Scholar
  6. 6.
    Takeda, K., Kise, K., and Iwamura, M., Real-time document image retrieval on a smartphone, IEEE Proc. 10th Int. Workshop on Document Analysis Systems, 2012, pp. 225–229.Google Scholar
  7. 7.
    Nakai, T., Kise, K., and Iwamura, M., Camera-based document image retrieval as voting for partial signatures of projective invariants, IEEE Proc. 8th Int. Conf. on Document Analysis and Recognition, 2005, vol. 1, pp. 379–383.CrossRefGoogle Scholar
  8. 8.
    Skoryukina, N., Nikolaev, D., Sheshkus, A., and Polevoy, D., Real time rectangular document detection on mobile devices, SPIE Proc. 9445, 7th Int. Conf. on Machine Vision, 2014.Google Scholar
  9. 9.
    Shiryaev, A.N., Veroyatnost’ (Probability), Moscow: MTsNMO, 2004, 3rd. ed.zbMATHGoogle Scholar
  10. 10.
    Duda, H., Use of the Hough transformation to detect lines and curves in pictures, Mag. Comm. ACM 15, 1972.Google Scholar
  11. 11.
    Nikolaev, D., Karpenko, S., Nikolaev, I., and Nikolaev, P., Hough transform: Underestimated tool in the computer vision field, Proc. of the 22th European Conf. on Modelling and Simulation, 2008, vol. 238.Google Scholar
  12. 12.
    Ershov, E., Terekhin, A., Nikolaev, D., Postnikov, V., and Karpenko, S., Fast Hough transform analysis: Pattern deviation from line segment, 8th Int. Conf. on Machine Vision, 2015.Google Scholar
  13. 13.
    Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision, New York: Cambridge University Press, 2003.zbMATHGoogle Scholar
  14. 14.
    Shakhno, K.U., Sbornik zadach po elementarnoi matematike povyshennoi slozhnosti (A Collection of Problems on Elementary Mathematics of Increased Complexity), Moscow: Ripol Klassik, 2013.Google Scholar
  15. 15.
    Prasolov, V.V., Zadachi po planimetrii (Problems in Planimetry), Moscow: MTsNMO, 2001, 4th ed.Google Scholar
  16. 16.
    Audet, C. and Dennis, J.E., Mesh adaptive direct search algorithms for constrained optimization, SIAM J. Optim., 2006, vol. 17, pp. 188–217.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Le Digabel, S., Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Trans. Math. Software, 2011, vol. 37, no. 4.Google Scholar
  18. 18.
    Kalman, R.E., A new approach to linear filtering and prediction problems, J. Basic Eng., 1960, vol. 82, no. 35.Google Scholar
  19. 19.
    Karpenko, S., Konovalenko, I., Miller, A., Miller, B., and Nikolaev, D., UAV control on the basis of 3D landmark bearing-only observations, Sensors, 2015, vol. 15, no. 12.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Arlazarov
    • 1
    • 2
  • A. E. Zhukovsky
    • 2
  • V. E. Krivtsov
    • 2
  • V. V. Postnikov
    • 1
    • 2
  1. 1.Institute for Systems Analysis, Computer Science and Control, Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations