Skip to main content
Log in

Nanoinformatics: Problems, methods, and technologies

  • Published:
Scientific and Technical Information Processing Aims and scope

Abstract

This paper outlines the range of problems solved by nanoinformatics, which is a newly originated discipline that combines the methods and tools for the propagation of data on nanomaterials as well as the instruments and technologies based on them. The specific features determined by the interdisciplinary character and rapid evolution of this knowledge area are summarized for the data on the properties of nanosized objects. The most-popular resources (databases, classifiers, and ontologies) on the properties of nanomaterials are presented. Some topical disproportions, which have occurred in nanoinformatics due to the predominant attention to nanomedicine at the expense of the traditional application fields of nanotechnologies, such as electronics and energetics, are pointed out. The general nanomaterial terminology and classification standards, which form a basis for the design of new databases and ontologies, are considered in detail. The CODATA (Committee on Data for Science and Technology) international standard for the universal description of a nanomaterial is proposed for use as the most advanced and universal approach to the solution of problems in nanoinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nanomanufacturing 2020 Roadmap, Amherst, MA: National Nanomanufacturing Network, 2011. http://eprints.internano.org/607/.

  2. Eletskii, A.V., Erkimbaev, A.O., Kobzev, G.A., Trachtengerts, M.S., and Zitserman, V.Y., Properties of nanostructures: Data acquisition, categorization, and evaluation, Data Sci. J., 2012, vol. 11, pp. 126–139.

    Article  Google Scholar 

  3. Rumble, J. and Freiman, St., Describing nanomaterials: Developing a multi-disciplinary framework, Nanoinformatics 2015 Workshop. http://nanoinformatics.org/2013/agenda.

  4. Maojo, V., Towards a visual taxonomy of nanoparticles. Enabling successful discovery and applications, Nanoinformatics 2015 Workshop. http://nanoinformatics.org/2015/agenda.

  5. Agrawal, A. and Choudhary, A., Perspective: Materials informatics and big data: Realization of the Fourth Paradigm of science in materials science, APL Mater., 2016, vol. 4, art. 053208.

    Google Scholar 

  6. Karagiannis, F., Keramida, D., Ioannidis, Y., et al., Technological and organizational aspects of global research data infrastructures towards 2020, Data Sci. J., 2013, vol. 12, pp. GRDI1–GRDI5.

    Google Scholar 

  7. Thomas, D.G., et al., Informatics and standards for nanomedicine technology, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, vol. 3, no. 5, pp. 511–532.

    Google Scholar 

  8. Panneerselvam, S. and Choi, S., Nanoinformatics: Emerging databases and available tools, Int. J. Mol. Sci., 2014, vol. 15, pp. 7158–7182.

    Article  Google Scholar 

  9. Mills, K.C., Murry, D., Guzan, K.A., and Ostraat, M.L., Nanomaterial registry: Database that captures the minimal information about nanomaterial physico-chemical characteristics, J. Nanopart. Res., 2014, vol. 16, p. 2219.

    Article  Google Scholar 

  10. Guzan, K.A., Mills, K.C., Gupta, V., et al., Integration of data: The nanomaterial registry project and data curation, Comput. Sci. Discovery, 2013, vol. 6, art. 014007.

    Google Scholar 

  11. Eletskii, A.V., Erkimbaev, A.O., Zitserman, V.Yu., Kobzev, G.A., and Trakhtengerts, M.S., Thermal properties of nanoscale objects: Systematization and evaluation of data reliability, Teplofiz. Vys. Temp., 2012, vol. 50, no. 4, pp. 524–532.

    Google Scholar 

  12. Pokropivny, V.V. and Skorokhod, V.V., New dimensionality classifications of nanostructures, Phys. E, 2008, vol. 40, no. 7, pp. 2521–2525.

    Article  Google Scholar 

  13. Erkimbayev, A.O., Zitserman, V.Yu., Kobzev, G.A., and Trakhtenherz, M.S., A digital library instead of a traditional database for nanotechnologies: An attempt to use the ABCD system, Autom. Doc. Math. Linguist., 2014, vol. 48, no. 4, pp. 212–223.

    Article  Google Scholar 

  14. Kogalovskii, M.R. and Novikov, B.A., Electronic library as a new class of information systems, Programmirovanie, 2000, no. 3, pp. 3–8.

    Google Scholar 

  15. Poryseva, E.A., Krasnov, A.A., and Kol’tsova, E.M., Creation and development of an information system in the field of composite materials, Usp. Khim. Khim. Tekhnol., 2012, vol. 26, no. 11 (140), pp. 38–41.

    Google Scholar 

  16. Karpova, I., Poryseva, E., Kazakov, G., and Kol’tsova, E., Development of the ontology in nanocomposite materials, Inf. Resur. Ross., 2012, no. 2, pp. 5–9.

    Google Scholar 

  17. Nanotechnology Standards, Nanostructure Science and Technology, Murashov, V. and Howard, J., Eds., New York: Springer, 2011.

  18. de la Iglesia, D., Cachau, R.E., Garcia-Remesal, M., and Maojo, V., Nanoinformatics knowledge infrastructures: Bringing efficient information management to nanomedical research, Comput. Sci. Discovery, 2013, vol. 6, art. 014011.

    Google Scholar 

  19. Klaessig, F., Marrapese, M., and Abe, S., Current perspectives in nanotechnology terminology and nomenclature, in Nanotechnology Standards, Murashov, V. and Howard, J., Eds., New York: Springer, 2011, pp. 21–52.

    Chapter  Google Scholar 

  20. International Organization of Standardization: Nanotechnologies–Vocabulary, ISO/TS 80004: 2010–2016. http://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-1:v1:en.

  21. ISO/TR 11360:2010. Nanotechnologies–Methodology for the Classification and Categorization of Nanomaterials.

  22. Chernozatonskii, L.A., Sheka, E.F., and Artyukh, A.A., Graphene-nanotube structures: Structure and energy of formation, Pis’ma Zh. Eksp. Teor. Fiz., 2009, vol. 89, no. 7, pp. 412–417.

    Google Scholar 

  23. Eletskii, A.V., Endohedral structures, Usp. Fiz. Nauk, 2000, vol. 170, no. 2, pp. 114–142.

    Article  Google Scholar 

  24. ASTM International: E 2456-06 Terminology for Nanotechnology, West Conshohocken: ASTM International, 2008.

  25. EC Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Opinion on the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies, The 21st Scenihr Plenary on November 29, 2007. http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_012.pdf.

  26. Builova, N.M., Yeletskii, A.V., Zitserman, V.Yu., and Kobzev, G.A., The systematization of sources and data on nanotechnologies, Sci. Tech. Inf. Process., 2013, vol. 40, no. 4, pp. 212–223.

    Article  Google Scholar 

  27. Uniform Description System for Materials on the Nanoscale. Prepared by the CODATA-VAMAS Working Group On the Description of Nanomaterials. Version 1.0, February 1, 2015. http://www.codata.org/nanomaterials.

  28. Erkimbayev, A.O., Zitserman, V.Yu., Kobzev, G.A., and Trakhtenherz, M.S., A universal metadata system for the characterization of nanomaterials, Sci. Tech. Inf. Process., 2015, vol. 42, no. 4, pp. 211–222.

    Article  Google Scholar 

  29. Bizer, C., Interlinking scientific data on a global scale, Data Sci. J., 2013, vol. 12, pp. GRDI6–GRDI12.

    Google Scholar 

  30. Erkimbayev, A.O., Zitserman, V.Yu., Kobzev, G.A., Serebrjakov, V.A., and Teymurazov, K.V., Publishing scientific data as linked open data, Sci. Tech. Inf. Process., 2015, vol. 42, no. 4, pp. 253–263.

    Google Scholar 

  31. Degtyarenko, K., de Matos, P., Ennis, M., et al., ChEBI: A database and ontology for chemical entities of biological interest, Nucleic Acids Res., 2008, vol. 36, pp. D344–D350.

    Article  Google Scholar 

  32. Batchelor, C., Ontologies for nanotechnology. #237-Technical Sessions, ACS National Meeting March 22–26, 2009, 2009, Salt Lake City, UT. http://acscinf.org/docs/meetings/237nm/presentations/237nm76.pdf.

    Google Scholar 

  33. Thomas, D.G., Pappu, R.V., Baker, N.A., et al., Nanoparticle ontology for cancer nanotechnology researches, J. Biomed. Inf., 2011, vol. 44, pp. 59–74.

    Article  Google Scholar 

  34. Muñoz-Mármol, M., Crespo, J., Fritts, M.J., and Maojo, V., Towards the taxonomic categorization and recognition of nanoparticles shapes, Nanomed.: Nanotechnol., Biol., Med., 2015, vol. 11, pp. 457–465.

    Google Scholar 

  35. Haiyan Sun, Zhen Xu, and Chao Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater., 2013, vol. 25, pp. 2554–2560.

    Article  Google Scholar 

  36. Hendren, C.O., Powers, C.M., Hoover, M.D., and Harper, S.L., The nanomaterial data curation initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field, Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1752–1762.

    Article  Google Scholar 

  37. Erkimbaev, A.O., Zitserman, V.Yu., Kobzev, G.A., and Kosinov, A.V., Associating the ontologies with databases by properties of substances and materials, Nauchn.-Tekhn. Inform., Ser. 2. Protsessy Sist., 2015, no. 12, pp. 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Erkimbaev.

Additional information

Original Russian Text © A.O. Erkimbaev, V.Yu. Zitserman, G.A. Kobzev, M.S. Trakhtengerts, 2016, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 1: Organizatsiya i Metodika Informatsionnoi Raboty, 2016, No. 10, pp. 1–18.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkimbaev, A.O., Zitserman, V.Y., Kobzev, G.A. et al. Nanoinformatics: Problems, methods, and technologies. Sci. Tech. Inf. Proc. 43, 199–216 (2016). https://doi.org/10.3103/S014768821604002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014768821604002X

Keywords

Navigation