Moscow University Soil Science Bulletin

, Volume 73, Issue 1, pp 11–17 | Cite as

Adaptive Capability of the VERT_MIG Algorithm to Simulate Vertical Migration of Radionuclides in Soils

  • S. V. Mamikhin
  • D. N. Lipatov
  • D. V. Manakhov
  • T. A. Paramonova
  • V. V. Stolbova
  • A. I. Shcheglov
Ecological Safety


The possibility of using the VERT_MIG algorithm in simulation models of the vertical migration of radionuclides in soil is discussed. The algorithm was successfully used to develop models of 137Cs and 90Sr migration for radioactive contamination of different soils as a result of the accidents at the Chernobyl and Fukushima-1 nuclear power plants. The modeling results are given. Prospects for further use of this algorithm and some aspects of using imitation modeling in this area are discussed.


radionuclides soils migration imitation modeling algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarenko, G.N. and Kononenko, L.V., Features of vertical migration of radionuclides from fuel and condensation depositions in soils, in Radioizotopy v ekologicheskikh issledovaniyakh (Radioisotopes for in Ecological Researches), Kiev, 1992.Google Scholar
  2. 2.
    Bulgakov, A.A., Modeling of 137Cs fixation in soils, Eur. Soil Sci., 2009, vol. 42, no. 6, pp. 675–681.CrossRefGoogle Scholar
  3. 3.
    Ivanov, Yu.A., Kashparov, V.A., Khomutinin, Yu.V., et al., Radionuclides emissed from Chernobyl nuclear power plant: vertical transfer in soils. III. Mathematical simulation of radionuclides vertical transfer in soils, Radiokhimiya, 1996, vol. 38, no. 3Google Scholar
  4. 4.
    Konoplev, A.V. and Golubenkov, A.A., The way to simulate radionuclides vertical migration in soil according to nuclear accident results, Meteorol. Gidrol., 1991, no. 10.Google Scholar
  5. 5.
    Konoplev, A.V., Golosov, V.N., Ioshchenko, V.I., et al., Vertical distribution of radiocesium in soils of the area affected by the Fukushima Dai-ichi Nuclear Power Plant Accident, Eurasian Soil Sci., 2016, vol. 49, no. 5, pp. 570–580.CrossRefGoogle Scholar
  6. 6.
    Loshchilov, N.A., Ivanov, Yu.A., Kashparov, V.A., et al., Radionuclides emissed from Chernobyl nuclear power plant: vertical migration in Poles’e soils in different physical-chemical forms, in Problemy sel’skokhozyaistvennoi radiologii (Problems of Agricultural Radiology), Kiev, 1991.Google Scholar
  7. 7.
    Mamikhin, S.V., Dinamika ugleroda organicheskogo veshchestva i radionuklidov v nazemnykh ekosistemakh (imitatsionnoe modelirovaniya i primenenie informatsionnykh tekhnologii) (Dynamic of Organic Matter Carbon and Radionuclides in On-Ground Ecosystems. Imitation Simulation and Application of Information Technologies), Moscow, 2003.Google Scholar
  8. 8.
    Mamikhin, S.V., Bioavailability of soil radionuclides and the way to reproduce its dynamics in imitation models of on-ground ecosystems, Vestn. Mosk. Univ., Ser. 17. Pochvoved., 2004, no. 2.Google Scholar
  9. 9.
    Mamikhin, S.V., Simulation of the dynamics of different forms of radiocesium in soils of terrestrial ecosystems, Moscow Univ. Soil Sci. Bull., 2007, vol. 62, no. 4, pp. 196–199.CrossRefGoogle Scholar
  10. 10.
    Mamikhin, S.V., Imitation simulation of radionuclides behavior in on-ground ecosystems for researching Chernobyl accident afterwards, Radiats. Biol. Radioekol., 2016, vol. 56, no. 3Google Scholar
  11. 11.
    Mamikhin, S.V. and Badawy, W.M., A simulation model of 3D migration of Cs-137 in soils, Moscow Univ. Soil Sci. Bull., 2011, vol. 66, no. 4, pp. 163–167.CrossRefGoogle Scholar
  12. 12.
    Mamikhin, S.V. and Manakhov, D.V., A simulation model of 90Sr daily dynamics in the soil–stand system of deciduous forests, Moscow Univ. Soil Sci. Bull., 2016, vol. 71, no. 2, pp. 71–77.CrossRefGoogle Scholar
  13. 13.
    Polikarpov, G.G., Klechkovskii, V.M., and Aleksakhin, R.M., Radioekologiya (Radioecology), Moscow, 1971.Google Scholar
  14. 14.
    Silant’ev, A.N. and Shkuratova, I.G., Obnaruzhenie promyshlennykh zagryaznenii pochvy i atmosfernykh vypadenii na fone global’nogo zagryazneniya (The Way to Detect Industrial Pollution of Soils and Atmospheric Precipitations on the Background of Global Pollution), Leningrad, 1983.Google Scholar
  15. 15.
    Fesenko, S.V., Spiridonov, S.I., Aleksakhin, R.M., et al., Mathematical model of the biological availability of 137Cs in the soils of grassland ecosystems, Eurasian Soil Sci., 1997, vol. 30, no. 1, pp. 34–39.Google Scholar
  16. 16.
    Fesenko, S.V., Spiridonov, S.I., Sanzharova, N.I., Anisimov, V.S., and Aleksakhin, R.M., Simulation of 137Cs migration over the soil–plant system of peat soils contaminated after the Chernobyl accident, Russ. J. Ecol., 2002, vol. 33, no. 3, pp. 170–177.CrossRefGoogle Scholar
  17. 17.
    Shcheglov, A.I., Biogeokhimiya tekhnogennykh radionuklidov v lesnykh ekosistemakh: po materialam 10-letnikh issledovanii v zone vliyaniya avarii na ChAES (Biogeochemistry of Technogenic Radionuclides in Forest Ecosystems according to 10-Year Researches in Chernobyl Accident Zone), Moscow, 2000.Google Scholar
  18. 18.
    Absalom, J.P., Young, S.D., Crout, N.M., et al., Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics, J. Environ. Radioact., 2001, vol. 52, no. 1, pp. 31–43.CrossRefGoogle Scholar
  19. 19.
    Crout Neil, M.J., Beresford, N.A., Howard, B.J., et al., Modeling soil transport and plant uptake of radiocaesium, in Transfer of Radionuclides in Natural and Semi-Natural Environments, Desmet, G., Nassimbeni, P., and Belli, M., Eds., Barking, 1990.Google Scholar
  20. 20.
    Hormann, V. and Kirchner, G., Prediction of the effects of soil-based countermeasures on soil solution chemistry of soils contaminated with radiocesium using the hydrogeochemical code PHREEQC, Sci. Total Environ., 2002, vol. 289, nos. 1–3.Google Scholar
  21. 21.
    Koblinger-Bokori, E., Szerbin, P., Koblinger, L., and Vegvari, I., Measurements and modeling of 137Cs migration into various types of soil, Proc. 9th Congress of IRPA, Vienna, 1996, vol. 2.Google Scholar
  22. 22.
    Kundas, S.P., Gishkeluk, I., and Grinchik, N., Application of computer modeling for the analysis and prediction of contaminant behavior in groundwater systems, in Strategies to Enhance Environmental Security in Transition Countries, Hull, R.N.,, Eds., Vienna, 2007.Google Scholar
  23. 23.
    Mamikhin, S.V., Mathematical model of Cs-137 vertical migration in a forest soil, J. Environ. Radioact., 1995, vol. 28, no. 2Google Scholar
  24. 24.
    Mamikhin, S.V., Golosov, V.N., Paramonova, T.A., et al., Vertical distribution of 137Cs in alluvial soils of the Lokna river floodplain (Tula oblast) long after the Chernobyl accident and its simulation, Eurasian Soil Sci., 2016, vol. 49, no. 12Google Scholar
  25. 25.
    Sundblud, B. and Mathiasson, L., The turnover of Cs- 137 within a forest ecosystem described by a compartment modelling approach GIEDEA study site, Sweden, Sci. Total Environ., 1994, vol. 157, pp. 139–146.CrossRefGoogle Scholar
  26. 26.
    Takahashi, J., Tamura, K., Suda, T., et al., Vertical distribution and temporal changes of 137cs in soil profiles under various land uses after the Fukushima Dai-ichi nuclear power plant accident, J. Environ. Radioact., 2015, vol. 139, pp. 351–361.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. V. Mamikhin
    • 1
  • D. N. Lipatov
    • 1
  • D. V. Manakhov
    • 1
  • T. A. Paramonova
    • 1
  • V. V. Stolbova
    • 1
  • A. I. Shcheglov
    • 1
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations