Approach to the Evaluation of the Efficiency of Information Security in Control Systems

Abstract

A methodological approach to evaluation of the efficiency of information security in the information-control subsystem of a complex dynamic system is proposed. As an efficiency index, we have used the degree of realization of possibilities of the controlled dynamic system with consideration of damage prevention expressed in the change in the control cycle duration depending on the destructive actions that damage the completeness, integrity, accuracy, reliability, accessibility, and operability of processing of the information necessary for forming management decisions.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    Zegzhda, D.P. and Pavlenko, E.Y., Cyber-physical system homeostatic security management, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 805–816.

    Article  Google Scholar 

  2. 2

    Zegzhda, D.P. and Pavlenko, E.Yu., Digital manufacturing security indicators, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1150–1159. https://doi.org/10.3103/S0146411618080333

    Article  Google Scholar 

  3. 3

    Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Clarifying integrity control at the trusted information environment, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 337–344.

    Article  Google Scholar 

  4. 4

    Zegzhda, D.P. and Kalinin, M.O., Logical security evaluation of real-world operating systems, International Conference on Enterprise Information Systems and Web Technologies, EISWT 2007, 2007, pp. 234–241.

  5. 5

    Zegzhda, P.D., Zegzhda, D.P., and Kalinin, M.O., A new approach to security evaluation of operating systems, Commun. Comput. Inf. Sci., 2007, vol. 1, pp. 254–259.

    Google Scholar 

  6. 6

    Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.

    Article  Google Scholar 

  7. 7

    Kalinin, M.O. and Pavlenko, E.Y., Increasing the fault tolerance and availability of software defined networks using network equipment control based on multiobjective optimization by service quality parameters, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 673–678.

    Article  Google Scholar 

  8. 8

    Zegzhda, P., Zegzhda, D., Kalinin, M., Pechenkin, A., Minin, A., and Lavrova, D., Safe integration of SIEM systems with Internet of Things: Data aggregation, integrity control, and bioinspired safe routing, ACM International Conference Proceeding Series, 2016, pp. 81–87.

  9. 9

    Zegzhda, P.D., Zegzhda, D.P., and Nikolskiy, A.V., Using graph theory for cloud system security modeling, International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, Berlin, 2012, pp. 309–318.

  10. 10

    Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64.

    Google Scholar 

  11. 11

    Poltavtseva, M.A., Zegzhda, D.P., and Pavlenko, E.Y., High-performance NIDS architecture for enterprise networking, 2019 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2019, 2019. https://doi.org/10.1109/BlackSeaCom.2019.8812808

  12. 12

    Lavrova, D., Zaitceva, E., and Zegzhda, P., Bio-inspired approach to self-regulation for industrial dynamic network infrastructure, CEUR Workshop Proc., 2019, vol. 2603, pp. 34–39.

    Google Scholar 

  13. 13

    Anisimov, V.G., Anisimov, E.G., Saurenko, T.N., and Zotova, E.A., Models of forecasting destructive influence risks for information processes in management systems, Inf.-Upr. Sist., 2019, no. 5, pp. 18–23.

  14. 14

    Saurenko, T.N., et al., Forecasting information security incidents, Probl. Inf. Bezop., Komp’yut. Sist., 2019, no. 3, pp. 24–28.

  15. 15

    Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., Saurenko, T.N., and Prisyazhnyuk, S.P., Indices of the effectiveness of information protection in an information interaction system for controlling complex distributed organizational objects, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 824–828.

    Article  Google Scholar 

  16. 16

    Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.

    Article  Google Scholar 

  17. 17

    Pavlenko, E. and Zegzhda, D., Sustainability of cyber-physical systems in the context of targeted destructive influences, IEEE Industrial Cyber-Physical Systems, 2018, pp. 830–834.

    Google Scholar 

  18. 18

    Lukacs, E., Characteristic Functions, Cover Hafner Publ. Co., 1960.

    Google Scholar 

  19. 19

    Anisimov, V.G., Anisimov, E.G., Martyshchenko, L.A., and Shatokhin, D.V., Metody operativnogo statisticheskogo analiza rezul’tatov vyborochnogo kontrolya kachestva promyshlennoi produktsii (Methods of Operational Statistical Analysis of Results of Sampling Quality Control of Industrial Products), St. Petersburg: Tula, 2001.

  20. 20

    Anisimov, V.G., et al., Strategicheskoe upravlenie innovatsionnoi deyatel’nost’yu: Analiz, planirovanie, modelirovanie, prinyatiya reshenii, organizatsiya, otsenka (Strategic Management of Innovative Activity: Analysis, Planning, Modeling, Decision Making, Organization, and Assessment), St. Petersburg, 2017.

  21. 21

    Il'in, I.V., et al., Matematicheskie metody i instrumental’nye sredstva otsenivaniya effektivnosti investitsii v innovatsionnye proekty (Mathematical Methods and Tools for Assessing the Effectiveness of Investments in Innovative Projects), St. Petersburg, 2018.

    Google Scholar 

  22. 22

    Anisimov, V.G., Ekonomicheskii i tamozhennyi risk-menedzhment (Economic and Customs Risk Management), Moscow: Ross. Tamozhen. Akad., 2015.

  23. 23

    Jaynes, E.T., Information theory and statistical mechanics, Phys. Rev., Ser. II, 1957, vol. 106, no. 4, pp. 620–630.

    MATH  Google Scholar 

  24. 24

    Anisimov, V.G., Anisimov, E.G., Saurenko, T.N., and Sonkin, M.A., The model and the planning method of volume and variety assessment of innovative products in an industrial enterprise, J. Phys.: Conf. Ser., 2017, vol. 803, no. 1. https://doi.org/10.1088/1742-6596/803/1/012006

  25. 25

    Saurenko, T., Anisimov, E., Anisimov, V., and Bagaeva, I., Conceptual provisions for assessing the effectiveness of energy saving, E3S Web of Conferences, 2018.

  26. 26

    Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.

    Article  Google Scholar 

  27. 27

    Anisimov, V.G., Zegzhda, P.D., Anisimov, E.G., and Bazhin, D.A., A risk-oriented approach to the control arrangement of security protection subsystems of information systems, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 717–721.

    Article  Google Scholar 

  28. 28

    Fishburn, P.C., Nonlinear Preference and Utility Theory, Baltimore: Johns Hopkins Univ. Press, 1988.

    Google Scholar 

  29. 29

    Anisimov, E.G., Anisimov, V.G., and Sonkin, M.A., Mathematical simulation of adaptive allocation of discrete resources, Proceedings of the 2016 Conference on Information Technologies in Science, Management, Social Sphere and Medicine (ITSMSSM 2016), Tomsk, 2016, pp. 282–285.

  30. 30

    Saurenko, T., Anisimov, E., Anisimov, V., and Levina, A., Comparing investment projects of innovative developing strategies of municipalities, based on a set of indicators, MATEC Web of Conferences: International Science Conference SPbWOSCE-2017 “Business Technologies for Sustainable Urban Development,” 2017, 2018, p. 01038.

  31. 31

    Anisimov, V.G., Anisimov, E.G., Novikov, V.E., and Ostanin, V.A., Modeling of optimization problems of decision support in innovative management, Vestn. Ross. Tamozhen. Akad., 2016, no. 1, pp. 90–98.

  32. 32

    Anisimov, V.G. and Anisimov, E.G., An optimization model for distribution of renewable resources in the management of economic systems, Vestn. Ross. Tamozhen. Akad., 2007, no. 1, pp. 49–54.

  33. 33

    Gradshtein, I.S. and Ryzhik, I.N., Tablitsy integralov, summ, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Fimatgiz, 1962.

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to P. D. Zegzhda or V. G. Anisimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Smirnova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zegzhda, P.D., Anisimov, V.G., Sem’yanov, P.V. et al. Approach to the Evaluation of the Efficiency of Information Security in Control Systems. Aut. Control Comp. Sci. 54, 864–870 (2020). https://doi.org/10.3103/S0146411620080362

Download citation

Keywords:

  • complex dynamic system control
  • information-control subsystem
  • information security
  • efficiency