Analysis of Safety Methods for a New Generation of Automobiles

Abstract

The main automobile infrastructure trends are considered. New attack vectors related to the implementation of V2X and IVI technologies are presented, and existing methods of their detection and prevention are analyzed. Requirements are formulated for the information security that meets the security features of new-generation motor vehicles.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    Kalinin, M., Krundyshev, V., Zegzhda, P., and Belenko, V., Network security architectures for VANET, ACM International Conference Proceeding Series, 2017, pp. 73–79.

  2. 2

    Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Y., and Belenko, V., Software defined security for vehicular ad hoc networks, 2016 International Conference on Information and Communication Technology Convergence, 2016, pp. 533–537.

  3. 3

    Kalinin, M.O., Krundyshev, V.M., Rezedinova, E.Y., and Reshetov, D.V., Hierarchical software-defined security management for large-scale dynamic networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 906–911.

    Article  Google Scholar 

  4. 4

    Kalinin, M., Krundyshev, V. Rezedinova, E., and Zegzhda, P., Role-based access control for vehicular adhoc networks, 2018 IEEE International Black Sea Conference on Communications and Networking, 2018. https://doi.org/10.1109/BlackSeaCom.2018.8433628

  5. 5

    Kalinin, M.O., Krundyshev, V.M., and Semianov, P.V., Architectures for building secure vehicular networks based on SDN technology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 907–914.

    Article  Google Scholar 

  6. 6

    Zegzhda, P.D., Ivanov, D.V., Moskvin, D.A., and Kubrin, G.S., Actual security threats for vehicular and mobile ad hoc networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 993–999.

    Article  Google Scholar 

  7. 7

    Scalas, M. and Giacinto, G., Automotive Cybersecurity: Foundations for Next-Generation Vehicles, 2019. https://arxiv.org/pdf/1910.01037.pdf.

  8. 8

    Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.

    Article  Google Scholar 

  9. 9

    Upstream Security. Global Automotive Cybersecurity Report, 2019. https://industrytoday.com/wp-content/uploads/2018/12/Upstream-Security-Global-Automotive-Cybersecurity-Report-2019.pdf.

  10. 10

    Mazloom, S. and Mason, G., A Security Analysis of an In Vehicle Infotainment and App Platform, 2016. http://damonmccoy.com/papers/ivi-woot.pdf.

  11. 11

    Hickman, J., Ridin’ With Apple CarPlay, 2019. https://thebinaryhick.blog/2019/05/08/ridin-with-apple-carplay/.

  12. 12

    Hickman, J., Driving Android Auto, 2019. https://dfir.pubpub.org/pub/716tlra7.

  13. 13

    Aleksandrova, E.B., Methods of group authentication for low-resource vehicle and flying self-organizing networks, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 947–958.

    Article  Google Scholar 

  14. 14

    Aleksandrova, E.B., Shkorkina, E.N., and Kalinin, M.O., Organization of the quantum cryptographic keys distribution system for transportation infrastructure users, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 969–971.

    Article  Google Scholar 

  15. 15

    Aleksandrova, E.B., Yarmak, A.V., and Kalinin, M.O., Analysis of approaches to group authentication in large-scale industrial systems, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 879–882.

    Article  Google Scholar 

  16. 16

    Aleksandrova, E.B., Zegzhda, D.P., and Konoplev, A.S., Applying the group signature for entity authentication in distributed grid computing networks, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 739–742.

    Article  Google Scholar 

  17. 17

    Shenets, N.N., Authentication in dynamic peer-to-peer networks based on homomorphic secret sharing, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 936–946.

    Article  Google Scholar 

  18. 18

    Shenets, N.N., Security infrastructure of FANET based on secret sharing and authenticated encryption, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 857–864.

    Article  Google Scholar 

  19. 19

    Belenko, V., Krundyshev, V., and Kalinin, M., Synthetic datasets generation for intrusion detection in VANET, ACM International Conference Proceeding Series, 2018. https://doi.org/10.1145/3264437.3264479

  20. 20

    Krundyshev, V., Kalinin, M., and Zegzhda, P., Artificial swarm algorithm for VANET protection against routing attacks, IEEE Industrial Cyber-Physical Systems, ICPS 2018, 2018, pp. 795–800. https://doi.org/10.1109/ICPHYS.2018.8390808

  21. 21

    Ovasapyan, T.D., Moskvin, D.A., and Kalinin, M.O., Using neural networks to detect internal intruders in VANETs, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 954–958.

    Article  Google Scholar 

  22. 22

    Belenko, V., Chernenko, V., Kalinin, M., and Krundyshev, V., Evaluation of GAN applicability for intrusion detection in self-organizing networks of cyber physical systems, 2018 International Russian Automation Conference, RusAutoCon, 2018. https://doi.org/10.1109/RUSAUTOCON.2018.8501783

  23. 23

    Belenko, V., Krundyshev, V., and Kalinin, M., Intrusion detection for Internet of Things applying metagenome fast analysis, Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4, 2019, pp. 129–135.

    Google Scholar 

  24. 24

    Demidov, R.A., Pechenkin, A.I., Zegzhda, P.D., and Kalinin, M.O., Application model of modern artificial neural network methods for the analysis of information systems security, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 965–970.

    Article  Google Scholar 

  25. 25

    Belenko, V., Chernenko, V., Krundyshev, V., and Kalinin, M., Data-driven failure analysis for the cyber physical infrastructures, 2019 IEEE International Conference on Industrial Cyber Physical Systems, ICPS 2019, 2019, pp. 775–779.

  26. 26

    Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Estimating the sustainability of cyber-physical systems based on spectral graph theory, IEEE International Black Sea Conference on Communications and Networking, 2019. https://doi.org/10.1109/BlackSeaCom.2019.8812826

  27. 27

    Busygin, A.G., Konoplev, A.S., and Zegzhda, D.P., Providing stable operation of self-organizing cyber-physical system via adaptive topology management methods using blockchain-like directed acyclic graph, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1080–1083.

    Article  Google Scholar 

  28. 28

    Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64.

    Google Scholar 

  29. 29

    Ivanov, D.V. and Moskvin, D.A., Application of fractal methods to ensure the cyber-resilience of self-organizing networks, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 336–341.

  30. 30

    Ovasapyan, T.D. and Ivanov, D.V., Security provision in wireless sensor networks on the basis of the trust model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1042–1048.

    Article  Google Scholar 

  31. 31

    Nilsson, D., Larson, U., and Jonsson, E., Efficient In-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes, 2018. https://IEEExplore.IEEE.org/document/4657091.

  32. 32

    Hartwiche, F., Can with Flexible Data-Rate, 2012. https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_hartwich.pdf.

  33. 33

    Levi, M., Allouche, Y., and Kontorovich, A., Advanced Analytics for Connected Cars Cyber Security, 2017. https://arxiv.org/pdf/1711.01939.

  34. 34

    Cho, K. and Shin, K., Fingerprinting Electronic Control Units for Vehicle Intrusion Detection, 2016. https://www.usenix.org/system/files/conference/usenixsЭБYrity16/sec16_paper_cho.pdf.

  35. 35

    Kneiband, M. and Huth, C., On the Fingerprinting of Electronic Control Units Using Physical Characteristics in Controller Area Networks, 2017. https://pdfs.semanticscholar.org/3c6a/1315926ec021583fc507a8cfbf649c4ea068.pdf.

  36. 36

    Choi, W., Jo, H., Woo, S., and Chun, J., Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks, 2016. https://arxiv.org/pdf/1607.00497.pdf.

  37. 37

    Song, H., Kim, H.R., and Kim, H.K., Intrusion Detection System Based on the Analysis of Time Intervals of CAN messages for In-Vehicle Network, 2016. https://awesong-kor.github.io/files/Intrusion%20Detection%20 System%20Based%20on%20the%20Analysis%20of%20Time%20Intervals%20of%20CAN%20Messages%20 for%20In-Vehicle%20Network.pdf.

  38. 38

    Beltrame, G., et al., xLuna: A Real-Time, Dependable Kernel for Embedded Systems, 2010. https://amstel.estec. esa.int/tecedm/website/biblio/FossatiIPSOC2010_2.pdf.

  39. 39

    Serra, J., Rodrigues, J., Almeid, T., and Andmendes, A., Multi-Criticality Hypervisor for Automotive Domain, 2014. https://st3.ning.com/topology/rest/1.0/file/get/1007753?profile=original.

Download references

Funding

The research was carried out within the framework of the scholarship of the President of the Russian Federation for young scientists and graduate students SP-1689.2019.5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Pavlenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kolemesin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, K.V., Pavlenko, E.Y. & Sem’yanov, P.V. Analysis of Safety Methods for a New Generation of Automobiles. Aut. Control Comp. Sci. 54, 915–921 (2020). https://doi.org/10.3103/S0146411620080349

Download citation

Keywords:

  • cyber security of transport technologies
  • “connected” cars
  • integrated infotainment system
  • intrusion detection systems
  • ECU identification