Identification of Cyber Threats in Networks of Industrial Internet of Things Based on Neural Network Methods Using Memory

Abstract

It is proposed to use modern artificial neural networks to identify cyber threats in networks of the Industrial Internet of Things. The modeling of an industrial system under the influence of cyberattacks was carried out. As a result of the experiments, the optimal configuration parameters of the recurrent LSTM network with a confirmed number of layers and states have been determined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Schwab, K., The Fourth Industrial Revolution, Penguin UK, 2017.

    Google Scholar 

  2. 2

    World Economic Forum The Fourth Industrial Revolution, Davos, 2016. https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-itmeans-and-how-to-respond. Accessed February 5, 2020.

  3. 3

    Vasiliev, Y.S., Zegzhda, P.D., and Kuvshinov, V.I., Modern problems of cybersecurity, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2014, vol. 17, no. 3, pp. 210–214.

  4. 4

    Lavrova, D., Zegzhda, D., and Yarmak, A., Using GRU neural network for cyber-attack detection in automated process control systems, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, 2019, pp. 1–3. https://doi.org/10.1109/BlackSeaCom.2019.8812818

  5. 5

    Malyshev, E.V., Moskvin, D.A., and Zegzhda, D.P., Application of an artificial neural network for detection of attacks in VANETs, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 889–894.

    Article  Google Scholar 

  6. 6

    Ovasapyan, T.D., Moskvin, D.A., and Kalinin, M.O., Using neural networks to detect internal intruders in VANETs, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 954–958.

    Article  Google Scholar 

  7. 7

    Kalinin, M., Demidov, R., and Zegzhda, P., Hybrid neural network model for protection of dynamic cyber infrastructure, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 375–382.

  8. 8

    Demidov, R.A., Pechenkin, A.I., Zegzhda, P.D., and Kalinin, M.O., Application model of modern artificial neural network methods for the analysis of information systems security, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 965–970.

    Article  Google Scholar 

  9. 9

    Demidov, R.A., Zegzhda, P.D., and Kalinin, M.O., Threat analysis of cyber security in wireless adhoc networks using hybrid neural network model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 971–976.

    Article  Google Scholar 

  10. 10

    Belenko, V., Chernenko, V., Kalinin, M., and Krundyshev, V., Evaluation of GAN applicability for intrusion detection in self-organizing networks of cyber physical systems, 2018 International Russian Automation Conference (RusAutoCon), 2018. https://doi.org/10.1109/RUSAUTOCON.2018.8501783

  11. 11

    Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.

    Article  Google Scholar 

  12. 12

    Lavrova, D.S., Alekseev, I.V., and Shtyrkina, A.A., Security analysis based on controlling dependences of network traffic parameters by wavelet transformation, Autom. Control Comput. Sci., 2018, Vol, no. 8, pp. 931–935.

  13. 13

    Ivanov, D.V. and Moskvin, D.A., Application of fractal methods to ensure the cyber-resilience of self-organizing networks, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 336–341.

  14. 14

    Poltavtseva, M.A. and Kalinin, M.O., Modeling big data management systems in information security, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 895–902.

    Article  Google Scholar 

  15. 15

    Kalinin, M.O. and Minin, A.A., Security evaluation of a wireless ad-hoc network with dynamic topology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 899–901.

    Article  Google Scholar 

  16. 16

    Poltavtseva, M.A., Zegzhda, D.P., and Kalinin, M.O., Big data management system security threat model, Autom. Control Comput. Sci., 2019, vol. 53, no. 8, pp. 903–913. https://doi.org/10.3103/S0146411619080261

    Article  Google Scholar 

  17. 17

    Poltavtseva, M.A. and Kalinin, M.O., Conceptual data modeling using aggregates to ensure large-scale distributed data management systems security, Stud. Comput. Intell., 2020, vol. 868, pp. 41–47.

    Google Scholar 

  18. 18

    Zegzhda, P., Zegzhda, D., Kalinin, M., Pechenkin, A., Minin, A., and Lavrova, D., Safe integration of SIEM systems with Internet of Things: Data aggregation, integrity control, and bioinspired safe routing, ACM International Conference Proceeding Series, 2016, pp. 81–87.

  19. 19

    Aydogan, E., et al., A central intrusion detection system for RPL-based industrial Internet of Things, 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), 2019, pp. 1–5.

  20. 20

    Belenko, V., Krundyshev, V., and Kalinin, M., Synthetic datasets generation for intrusion detection in VANET, Proceedings of the 11th International Conference on Security of Information and Networks, 2018, pp. 1–6.

  21. 21

    Kalinin, M., Krundyshev, V., Rezedinova, E., and Zegzhda, P., Role-based access control for vehicular adhoc networks, 2018 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2018, 2018. https://doi.org/10.1109/BlackSeaCom.2018.8433628

  22. 22

    Azzouni, A. and Pujole, G., A Long Short-Term Memory Recurrent Neural Network for Network Traffic Matrix Prediction, 2017. arXiv:1705.05690v3 [cs.NI].

  23. 23

    Bouaziz, M., et al., Parallel Long Short-Term Memory for Multi-Stream Classification, 2017. arXiv:1702.03402v1 [cs.LG].

  24. 24

    Danihelka, I., Wayne, G., Uria, B., and Kalchbrenner, N., Associative Long Short-Term Memory, 2016. arXiv:1602.03032v2 [cs.NE].

  25. 25

    Fu, X., et al., Long short-term memory network over rhetorical structure theory for sentence-level sentiment analysis, JMLR: Workshop and Conference Proceedings, 2016, vol. 63, pp. 17–32.

    Google Scholar 

  26. 26

    Henaff, M., Szlam, A., and LeCun, Y., Recurrent Orthogonal Networks and Long-Memory Tasks, 2017. arXiv:1602.06662v2 [cs.NE].

  27. 27

    Graves, A., et al., A novel connectionist system for improved unconstrained handwriting recognition, IEEE Trans. Pattern Anal. Mach. Intell., 2009, vol. 31, no. 5, pp. 855–868.

    Article  Google Scholar 

  28. 28

    Graves, A., Abdel-rahman, M., and Geoffre, H., Speech recognition with deep recurrent neural networks, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, 2013, pp. 6645–6649.

  29. 29

    With QuickType, Apple wants to do more than guess your next text. It wants to give you an AI. https://www.wired.com/2016/06/apple-bringing-ai-revolution-iphone/. Accessed February 5, 2020.

  30. 30

    Xiong, W., et al., The Microsoft 2017 Conversational Speech Recognition System [Technical Report]. https://www.microsoft.com/en-us/research/publication/microsoft-2017-conversational-speech-recognition-system/. Accessed February 5, 2020.

  31. 31

    NS-3 Open source network simulator. https://www.nsnam.org/. Accessed February 5, 2020.

  32. 32

    Tensorflow. https://www.tensorflow.org/. Accessed February 5, 2020.

  33. 33

    Keras. https://keras.io/. Accessed February 5, 2020.

Download references

Funding

The work was funded by the Russian Federation Presidential grants for support of leading scientific schools (SP-443.2019.5).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Krundyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Avodkova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krundyshev, V.M. Identification of Cyber Threats in Networks of Industrial Internet of Things Based on Neural Network Methods Using Memory. Aut. Control Comp. Sci. 54, 900–906 (2020). https://doi.org/10.3103/S0146411620080180

Download citation

Keywords:

  • artificial intelligence
  • cyber threats
  • neural networks
  • industrial system
  • IIoT
  • LSTM