Skip to main content
Log in

An Improved Generalized Fuzzy Model Based on Epanechnikov Quadratic Kernel and Its Application to Nonlinear System Identification

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Fuzzy models have excellent capability of describing nonlinear system, so that a wide variety of models is proposed. However, these models are difficult to train and interpret with a hypothesis of data independence. Base on the above problems, an improved generalized fuzzy model is proposed by rules centralization, a new mixture model is built by substituting Epanechnikov quadratic kernel for Gaussian kernel of Gaussian mixture model, and the mutual transformation between the two models is proved. The proposed fuzzy model can not only provide good interpretability, but also easily estimate the parameters of the fuzzy model using the proposed mixture model. In addition, this proposed fuzzy model has higher segmentation efficiency for the input space with consideration of data correlation. The experimental results of a well-known nonlinear system identification show that the proposed fuzzy model has the best performance with fewer fuzzy rules and better generalization ability than some popular models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bezdek, M.J.C., Editorial. Fuzzy models? What are they, and why?, IEEE Trans. Fuzzy Syst., 1993, vol. 1, no. 1, pp. 1–6.

    Article  MathSciNet  Google Scholar 

  2. Ming-Tao Gan, Madasu Hanmandlu, and Tan, A.H., From a Gaussian mixture model to additive fuzzy systems, IEEE Trans. Fuzzy Syst., 2005, vol. 13, no. 3, pp. 303–316.

    Article  Google Scholar 

  3. Verma, N.K. and Madasu Hanmandlu, From a Gaussian mixture model to non-additive fuzzy systems, IEEE Trans. Fuzzy Syst., 2007, vol. 15, no. 2, pp. 1–19.

    Article  Google Scholar 

  4. Maciel, L., Ballini, R., and Gomide, R., Evolving possibilistic fuzzy modelling, J. Stat. Comput. Simul., 2017, vol. 87, no. 7, pp. 1446–1466.

    Article  MathSciNet  Google Scholar 

  5. Md. Rafiul Hassan, Baikunth Nath, Michael Kirley, and Joarder Kamruzzaman, A hybrid of multiobjective Evolutionary Algorithm and HMM-Fuzzy model for time series prediction, Neurocomputing, 2012, vol. 81, no. 2, pp. 1–11.

    Article  Google Scholar 

  6. Qian Wang, Zhi-gang Su, Babak Rezaee, and Pei-hong Wang, Constructing T–S fuzzy model from imprecise and uncertain knowledge represented as fuzzy belief functions, Neurocomputing, 2015, vol. 166, no. 5, pp. 319–336.

    Article  Google Scholar 

  7. Skrjanc, I., et al., Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering, IEEE Trans. Fuzzy Syst., 2015, vol. 23, no. 4, pp. 861–871.

    Article  Google Scholar 

  8. Killian, M., Mayer, B., Schirrer, A., and Kozek, M., Cooperative fuzzy and model-predictive control, IEEE Trans. Fuzzy Syst., 2016, vol. 24, no. 2, pp. 471–482.

    Article  Google Scholar 

  9. Hartmann, B., Banfer, O., Nelles, O., Sodja, A., Teslic, L., and Skrjanc, I., Supervised hierarchical clustering in fuzzy model identification, IEEE Trans. Fuzzy Syst., 2011, vol. 19, no. 6, pp. 1163–1176.

    Article  Google Scholar 

  10. Rezaee, B. and Fazel Zarandi, M.H., Data-driven fuzzy modeling for Takagi–Sugeno–Kang fuzzy system, Inf. Sci., 2010, vol. 180, no. 2, pp. 241–255.

    Article  Google Scholar 

  11. Parras-Gutierrez, E., Garcia Arenas, M., and Rivas, V.M., Coevolution of lags and RBFNs for time series forecasting: L-Co-R algorithm, Soft Comput., 2012, vol. 16, no. 6, pp. 919–942.

    Article  Google Scholar 

  12. Zhang Chen, Xia Shixiong, and Liu Bing, A robust fuzzy kernel clustering algorithm, Appl. Math., 2013, vol. 7, no. 3, pp. 1005–1012.

    MathSciNet  Google Scholar 

  13. Abonyi, J., Babuska, R., and Szeifert, F., Fuzzy modelling with multivariate membership functions: Gray-box identification and control design, IEEE Trans. Syst. Man Cybern., 2001, vol. 31, no. 5, pp. 755–767.

    Article  Google Scholar 

  14. Marwan Bikdash, A highly interpretable form of Sugeno inference systems, IEEE Trans. Fuzzy Syst., 1999, vol. 7, no. 6, pp. 686–696.

    Article  Google Scholar 

  15. Sevcan Yilmaz and Yusuf Oysal, Fuzzy wavelet neural network models for prediction and identification of dynamical systems, IEEE Trans. Neural Networks, 2010, vol. 21, no. 10, pp. 1599–1609.

  16. Castro, J.R., Castillo, O., Melin, P., and Rodríguez-Díaz, A., A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks, Inf. Sci., 2009, vol. 179, no. 13, pp. 2175–2193.

    Article  MATH  Google Scholar 

  17. Azeem, Y.M.F., Hanmandlu, M., and Ahmad, N., Generalization of adaptive neuro-fuzzy inference systems, IEEE Trans. Neural Networks, 2000, vol. 11, no. 6, pp. 1332–1346.

    Article  Google Scholar 

  18. Kollios, G., Gunopulos, D., Koudas, N., and Berchtold, S., Efficient biased sampling for approximate clustering and outlier detection in large data sets, IEEE Trans. Knowl. Data Eng., 2003, vol. 15, no. 5, pp. 1170–1187.

    Article  Google Scholar 

  19. Jenssen, R., Indefinite Parzen window for spectral clustering, Proceedings of IEEE Workshop on Machine Learning for Signal Processing, Thessaloniki, 2007, pp. 390–395.

  20. Box, G.E.P. and Jenkins, G.M., Time Series Analysis, Forecasting and Control, Hoboken: John Wiley & Sons Inc, 2015.

    MATH  Google Scholar 

  21. Tong, R.M., The evaluation of fuzzy models derived from experimental data, Fuzzy Sets Syst., 1980, vol. 4, no. 1, pp. 1–12.

    Article  MATH  Google Scholar 

  22. Pedrycz, W., An identification algorithm in fuzzy relational systems, Fuzzy Sets Syst., 1984, vol. 13, no. 2, pp. 153–167.

    Article  MATH  Google Scholar 

  23. Xu, C.W. and Lu, Y.Z., Fuzzy model identification and self-learning for dynamic systems, IEEE Trans. Syst. Man Cybern., 1987, vol. 17, no. 4, pp. 683–689.

    Article  MATH  Google Scholar 

  24. Sugeno, M. and Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst., 1993, vol. 1, no. 1.

  25. Sugeno, M. and Tanaka, K., Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Sets Syst., 1991, vol. 42, no. 3, pp. 315–334.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, Y. and Cunningham, G.A. III, A new approach to fuzzy-neural system modeling, IEEE Trans. Fuzzy Syst., 1995, vol. 3, no. 2, pp. 190–198.

    Article  Google Scholar 

  27. Wang, L. and Langari, R., Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques, IEEE Trans. Fuzzy Syst., 1995, vol. 3, no. 4, pp. 454–458.

    Article  Google Scholar 

  28. Wang, L. and Langari, R., Complex systems modeling via fuzzy logic, IEEE Trans. Syst. Man Cybern., 1996, vol. 26, no. 1, pp. 100–106.

    Article  Google Scholar 

  29. Peng, X. and Wang, P., On generating linguistic rules for fuzzy model, Proc. of 2nd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1988, Urbino, pp. 185–192.

  30. Yoshinary, Y., Pedrycz, W., and Hirota, K., Construction of fuzzy models through clustering techniques, Fuzzy Sets Syst., 1993, vol. 54, no. 2, pp. 157–165.

    Article  MathSciNet  Google Scholar 

  31. Nie, J.H., Constructing fuzzy model by self-organizing counterpropagation network, IEEE Trans. Syst. Man Cybern., 1995, vol. 25, no. 6, pp. 963–970.

    Article  Google Scholar 

  32. Pedrycz, W., Lam, P.C.F., and Rocha, A.F., Distributed fuzzy system modeling, IEEE Trans. Syst. Man Cybern., 1995, vol. 25, no. 5, pp. 769–780.

    Article  Google Scholar 

  33. Delgado, M., Gomez-Skarmeta, A.F., and Martin, F., Fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling, IEEE Trans. Fuzzy Syst., 1997, vol. 5, no. 2, pp. 223–233.

    Article  Google Scholar 

  34. Joo, Y.H., Hwang, H.S., and Kim, K.B., Fuzzy system modeling by fuzzy partition and GA hybrid schemes, Fuzzy Sets Syst., 1997, vol. 86, no. 3, pp. 279–288.

    Article  Google Scholar 

  35. Lin, Y., Cunningham, G.A. III, and Coggeshall, S.V., Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network, IEEE Trans. Fuzzy Syst., 1997, vol. 5, no. 4, pp. 614–621.

    Article  Google Scholar 

  36. Chen, J.Q., Xi, Y.G., and Zhang, Z.J., A clustering algorithm for fuzzy model identification, Fuzzy Sets Syst., 1998, vol. 98, no. 3, pp. 1–11.

    Article  MathSciNet  Google Scholar 

  37. Wang, Y. and Rong, G., A self-organizing neural-network-based fuzzy system, Fuzzy Sets Syst., 1999, vol. 103, no. 1, pp. 1–11.

    Article  MATH  Google Scholar 

  38. Lo, J.C. and Yang, C.H., A heuristic error-feedback learning algorithm for fuzzy modeling, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 1999, vol. 29, no. 6, pp. 686–691.

    Google Scholar 

  39. Euntai Kim, Minkee Park, Seungwoo Kim, and Mignon Park, A transformed input-domain approach to fuzzy modeling, IEEE Trans. Fuzzy Syst., 1998, vol. 6, no. 4, pp. 596–604.

    Article  Google Scholar 

  40. Kang, S.J., Woo, C.H., Hwang, H.S., and Woo, K.B., Evolutionary design of fuzzy rule base for nonlinear system modeling and control, IEEE Trans. Fuzzy Syst., 2000, vol. 8, no. 1, pp. 37–45.

    Article  Google Scholar 

  41. Kukolj, D. and Levi, E., Identification of complex systems based on neural and Takagi-Sugeno fuzzy model, IEEE Trans. Syst. Man Cybern., Part B: Cybern., 2004, vol. 34, no. 1, pp. 272–282.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is supported by the Doctor Foundation of Yulin Normal University and Guangxi Natural Science Foundation (G2018015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Qinli or Chen Yu.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang Qinli, Chen Yu An Improved Generalized Fuzzy Model Based on Epanechnikov Quadratic Kernel and Its Application to Nonlinear System Identification. Aut. Control Comp. Sci. 53, 12–21 (2019). https://doi.org/10.3103/S0146411619010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411619010103

Keywords:

Navigation