Advertisement

Automatic Control and Computer Sciences

, Volume 51, Issue 7, pp 634–638 | Cite as

Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function

Article
  • 13 Downloads

Abstract

Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t − 1), where p, q > 0, q = 1 − p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.

Keywords

moments self-similarity Lebesgue function singular function Mellin transform polylogarithm asymptotic formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flajolet, P. and Sedgewick, R., Analytic Combinatorics, Cambridge University Press, 2008.MATHGoogle Scholar
  2. 2.
    Lomnicki, Z. and Ulam, S.E., Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes Fundam. Math., 1934, vol. 23, no. 1, pp. 237–278.MATHGoogle Scholar
  3. 3.
    NIST Handbook of Mathematical Functions, Olver, F.W.J., Ed., Cambridge University Press, 2010.Google Scholar
  4. 4.
    Salem, R., On some singular monotonic functions which are strictly increasing, Trans. Am. Math. Soc., 1943, vol. 53, no. 3, pp. 427–439.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Rham, G., On some curves defined by functional equations, in Classics on Fractals, Edgar, G.A., Ed., 1993, pp. 285–298Google Scholar
  6. 6.
    Flajolet, P., Gourdon, X., and Dumas, P., Mellin transforms and asymptotics: Harmonic sums, Theor. Comput. Sci., 1995, vol. 144, nos. 1–2, pp. 3–58.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Szpankowski, W., Average Case Analysis of Algorithms on Sequences, New York: John Wiley & Sons, 2001.CrossRefMATHGoogle Scholar
  8. 8.
    Gradstein, I.S. and Ryzhik, I.M., Table of Integrals, Series, and Products, Academic Press, 1994.Google Scholar
  9. 9.
    Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series, vol. 3: More Special Functions, New York: Gordon & Breach Sci., 1990.MATHGoogle Scholar
  10. 10.
    Timofeev, E.A., Bias of a nonparametric entropy estimator for Markov measures, J. Math. Sci., 2011, vol. 176, no. 2, pp. 255–269.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Timofeev, E.A., Asymptotic formula for the moments of Lebesgue’s singular function, Model. Anal. Inf. Sist., 2015, vol. 22, no. 5, pp. 723–730.MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations