New Bacterial Strains of Рseudomonas laurentiana: Promising Agents for Agrobiotechnology


Bacterial strains ANT 17 and ANT 56, antagonistic to plant pathogenic fungi Bipolaris sorokiniana, were isolated from activated sludge. Physiological, biochemical, and culture morphological properties and analysis of the 16S rRNA gene sequence and composition of fatty acids of cell walls of strains ANT 17 and ANT 56 supported its classification as the species Pseudomonas laurentiana. It was shown that strains P. laurentiana ANT 17 and P. laurentiana ANT 56 possess a set of properties characteristic of PGP (plant growth-promoting) microorganisms: they exhibit antifungal activity against phytopathogenic micromycetes and are capable of decomposing phosphates and synthesizing phytohormonal substances. Inoculation of cucumber, tomato, and cabbage seeds had a beneficial effect on their germination. Presowing treatment of wheat seeds under conditions of a natural infectious background with an inoculum of the isolated bacterial strains contributed to a decrease in the spread of fungi that cause root rot. The possibility of using strains P. laurentiana ANT 17 and P. laurentiana ANT 56 in biotechnology in order to increase the productivity of agroecosystems is suggested. The ability to stimulate the growth and development of plants for P. laurentiana strains is shown for the first time.

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. 1

    Dignamab, B.E., O’Callaghan, M., Condron, L.M., Raaijmakers, J.M., Kowalchuk, G.A., and Wake-lin, S.A., Impacts of long-term plant residue management on soil organic matter quality, Pseudomonas community structure and disease suppressiveness, Soil Biol. Biochem., 2019, vol. 135, pp. 396–406.

    Article  Google Scholar 

  2. 2

    Singh, D., Ghosh, P., Kumar, J., and Kumar, A., Plant growth-promoting rhizobacteria (PGPRs): Functions and benefits, in Microbial Interventions in Agriculture and Environment, Singh, D., Gupta, G., and Prabha, R., Eds., Singapore: Springer Nature, 2019, pp. 205–227.

    Google Scholar 

  3. 3

    Fischer, S., Príncipe, A., and Alvarez, F., Fighting plant diseases through the application of Bacillus and Pseudomonas strains, in Symbiotic Endophytes: Soil Biology, Aroca, R., Ed., Berlin: Springer Verlag, 2013, vol. 37, pp. 165–193.

    Google Scholar 

  4. 4

    Wright, M.H., Hanna, J.G., Pica, D.A., and Tebo, B.M., Pseudomonas laurentiana sp. Nov., an Mn(III)-oxidizing bacterium isolated from the St. Lawrence Estuary, Pharmacogn. Commun., 2018, vol. 8, no. 4, pp. 153–157.

    CAS  Article  Google Scholar 

  5. 5

    Deshmukh, A.M., Handbook of Media, Stains and Reagents in Microbiology, New Delhi: PAMA Publ., 1997.

    Google Scholar 

  6. 6

    Gerhardt, P., Manual of Methods for General Bacteriology, Washington, DC: Am. Soc. Microbiol., 1981.

    Google Scholar 

  7. 7

    Bergey’s Manual of Systematic Bacteriology. The Proteobacteria, Part B, the Gammaproteobacteria, Brenner, D.J., Krieg, N.R., and Staley, J.T., Eds., New York: Springer, 2004, pp. 323–379.

    Google Scholar 

  8. 8

    Lane, D.J., 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematic, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: John Wiley and Sons, Ltd, 1991, pp. 115–177.

    Google Scholar 

  9. 9

    Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chan, J., Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no. 5, pp. 1613–1617.

    CAS  Article  Google Scholar 

  10. 10

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549.

    CAS  Article  Google Scholar 

  11. 11

    Saitou, N. and Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  12. 12

    Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, no. 2, pp. 111–120.

    CAS  Article  Google Scholar 

  13. 13

    Sasser, M., Identification of bacteria by gas chromatography of cellular fatty acids, in Technical Note #101, Newark: MIDI Inc., 1990.

    Google Scholar 

  14. 14

    Kudoyarova, G.R., Vysotskaya, L.B., Arkhipova, T.N., Kuzmina, L.Yu., Galimsyanova, N.F., Sidorova, L.V., Gabbasova, I.M., Melentiev, A.I., and Veselov, S.Yu., Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants, Acta Physiol. Plant., 2017, vol. 39, no. 11, 253.

    Article  Google Scholar 

  15. 15

    Chetverikov, S.P. and Loginov, O.N., New metabolites of Azotobacter vinelandii exhibiting antifungal activity, Microbiol., 2009, vol. 78, no. 4, pp. 428–432.

    CAS  Article  Google Scholar 

  16. 16

    Yang, M., Mavrodi, D.V., Mavrodi, O.V., Bonsall, R.F., Parejko, J.A., Paulitz, T.C., Thomashow, L.S., Yang, H.-T., Weller, D.W., and Guo, J.-H., Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields, Phytopathology, 2011, vol. 101, no. 12, pp. 1481–1491.

    Article  Google Scholar 

  17. 17

    Zakharchenko, N.S., Kochetkov, V.V., Buryanov, Y.I., and Boronin, A.M., Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens, Appl. Biochem. Microbiol., 2011, vol. 47, no. 7, 661.

    CAS  Article  Google Scholar 

  18. 18

    Spaepen, S., Vanderleyden, J., and Remans, R., Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol. Rev., 2007, vol. 31, no. 4, pp. 425–448.

    CAS  Article  Google Scholar 

  19. 19

    Francis, I., Holsters, M., and Vereecke, D., The Gram-positive side of plant–microbe interactions, Environ. Microbiol., 2010, vol. 12, no. 1, pp. 1–12.

    CAS  Article  Google Scholar 

  20. 20

    Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., and Lohmann, J.U., Hormonal control of the shoot stem-cell niche, Nature, 2010, vol. 465, no. 7301, pp. 1089–1092.

    CAS  Article  Google Scholar 

  21. 21

    Rafikova, G.F., Korshunova, T.Yu., Minnebaev, L.F., Chetverikov, S.P., and Loginov, O.N., A new bacterial strain Pseudomonas koreensis IB-4, as a promising agent for plant pathogen biological control, Microbiology, 2016, vol. 85, no. 3, pp. 333–341.

    CAS  Article  Google Scholar 

Download references


This study was carried out using the equipment of the Agidel Regional Center for Shared Use in the framework of the state assignment of Ufa Federal Research Center, Russian Academy of Sciences (no. 075-00326-19-00) within the subject no. AAAA-A18-118022190100-9 at Ufa Institute of Biology (Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences).

Author information



Corresponding author

Correspondence to G. F. Rafikova.

Ethics declarations


The authors declare no conflict of interests. The work was carried out without the use of animals and without the involvement of people as subjects.


G.F. Rafikova ORCID:

Additional information

Translated by K. Lazarev

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rafikova, G.F., Kuzina, E.V., Korshunova, T.Y. et al. New Bacterial Strains of Рseudomonas laurentiana: Promising Agents for Agrobiotechnology. Moscow Univ. Biol.Sci. Bull. 75, 206–211 (2020).

Download citation


  • Pseudomonas laurentiana
  • PGP microorganisms
  • 16S rRNA gene
  • antifungal activity
  • indolylacetic acid
  • cytokinins