Skip to main content
Log in

Photocurable Hydrogels Containing Spidroin or Fibroin

  • Methods
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Photocurable biocompatible hydrogels were fabricated from methacrylated gelatin and silk proteins (a recombinant analogue of spidroin from Nephila clavipes spider web and fibroin from the cocoons of the silkworm Bombyx mori). These polymers are widely applicable in tissue engineering due to their biocompatibility and biodegradability. Hydrogels were fabricated using two different methods that allowed to obtain either the macroscopic scaffolds or microstructures with a defined shape. Three-dimensional hydrogel samples were prepared via monomers solution photopolymerization for 10 min. As a result, the disk-shaped samples of hydrogels approximately 13 mm in diameter were fabricated. Their porous structure was confirmed by scanning electron microscopy. Microstructures were formed on coverslips using an Eclipse Ti-E microscope equipped with an A1 confocal module (Nikon, Japan) and 405 nm laser. This approach allows to control the topographic features of the obtained substrates, and it is viable for creating the micropattern surfaces to reveal for studying the interaction of cells with a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S., Tuft, B.W., Xu, L., Polacco, M.A., Clarke, J.C., Guymon, C.A., and Hansen, M.R., Microtopographical features generated by photopolymerization recruit RhoA/ROCK through TRPV1 to direct cell and neurite growth, Biomaterials, 2015, vol. 53, pp. 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chia, H.N. and Wu, B.M., Recent advances in 3D printing of biomaterials, J. Biol. Eng., 2015, vol. 9, p.4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yue, K., Trujillo-de Santiago, G., Alvarez, M., Tamayol, A., Annabi, N., and Khademhosseini, A., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials, 2015, vol. 73, pp. 254–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao, W., He, J., Nichol, J.W., Wang, L., Hutson, C.B., Wang, B., Du, Y., Fan, H., and Khademhosseini, A., Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels, Acta Biomater., 2011, vol. 7, no. 6, pp. 2384–2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moisenovich, M.M., Pustovalova, O.I., Shackelford, J., Vasiljeva, T.V., Druzhinina, T.V., Kamenchuk, Y.A., Guzeev, V.V., Sokolova, O.S., Bogush, V.G., Debabov, V.G., Kirpichnikov, M.P., and Agapov, I.I., Tissue regeneration in vivo within recombinant spidroin 1 scaffolds, Biomaterials, 2012, vol. 33, no. 15, pp. 3887–3898.

    Article  CAS  PubMed  Google Scholar 

  6. Sidoruk, K.V., Davydova, L.I., Kozlov, D.G., Gubaidullin, D.G., Glazunov, A.V., Bogush, V.G., and Debabov, V.G., Fermentation optimization of a Saccharomyces cerevisiae strain producing 1F9 recombinant spidroin, Appl. Biochem. Microbiol., 2015, vol. 51, no. 7, pp. 766–773.

    Article  CAS  Google Scholar 

  7. Caló, E. and Khutoryanskiy, V.V., Biomedical applications of hydrogels: A review of patents and commercial products, Eur. Polym. J., 2015, vol. 65, pp. 252–267.

    Article  Google Scholar 

  8. Kamoun, E.A., Kenawy, E.R.S., and Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J. Adv. Res., 2017, vol. 8, no. 3, pp. 217–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arkhipova, A.Y., Nosenko, M.A., Malyuchenko, N.V., Zvartsev, R.V., Moisenovich, A.M., Zhdanova, A.S., Vasil’eva, T.V., Gorshkova, E.A., Agapov, I.I., Drutskaya, M.S., Nedospasov, S.A., and Moisenovich, M.M., Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice, Biochemistry (Moscow), 2016, vol. 81, no. 11, pp. 1251–1260.

    Article  CAS  Google Scholar 

  10. Moisenovich, M.M., Malyuchenko, N.V., Arkhipova, A.Y., Kotlyarova, M.S., Davydova, L.I., Goncharenko, A.V., Agapova, O.I., Drutskaya, M.S., Bogush, V.G., Agapov, I.I., Debabov, V.G., and Kirpichnikov, M.P., Novel 3D-microcarriers from recombinant spidroin for regenerative medicine, Dokl. Biochem. Biophys., 2015, vol. 463, no. 1, pp. 232–235.

    Article  CAS  PubMed  Google Scholar 

  11. Burri, O., Wolf, B., Seitz, A., and Gönczy, P., TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis, PLoS ONE, 2017, vol. 12, no. 7, p. e0179752.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kotliarova.

Additional information

Original Russian Text © I.V. Bessonov, M.S. Kotliarova, M.N. Kopitsyna, A.V. Fedulov, A.M. Moysenovich, A.Yu. Arkhipova, V.G. Bogush, D.V. Bagrov, A.A. Ramonova, A.E. Mashkov, K.V. Shaitan, M.M. Moisenovich, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2018, Vol. 73, No. 1, pp. 29–33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonov, I.V., Kotliarova, M.S., Kopitsyna, M.N. et al. Photocurable Hydrogels Containing Spidroin or Fibroin. Moscow Univ. Biol.Sci. Bull. 73, 24–27 (2018). https://doi.org/10.3103/S0096392518010030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392518010030

Keywords

Navigation