Drosophila melanogaster as a Model System for the Study of Human Neuropathy and the Testing of Neuroprotectors


Currently, the molecular characteristics of the occurrence and course of neurodegenerative diseases, which are among the most serious and still incurable illnesses, remain to be fully elucidated. Therefore, the search for novel medicines for the removal, relief, or postponement of symptoms in these pathologies remains relevant. In view of the complexity of undertaking this research in human, the identification of genes associated with developing neurodegenerative changes and the study of their functions in different (neuronal and glial) tissues and at different stages of ontogenesis are carried out in model systems. Drosophila melanogaster is one of the best and available objects for the identification of molecular genetic mechanisms underlying the development of neurodegeneration as well as for the initial tests of novel compounds with neuroprotective properties. This article discusses the methods of genetic analysis in Drosophila, the use of D. melanogaster as a model of human neurodegenerative disorders, and a possibility of using its model as test systems for the study of potential neuroprotectors.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Cuny, G.D., Neurodegenerative diseases: challenges and opportunities, Future Med. Chem, 2012, vol. 4, pp. 1647–1649.

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Saxena, S., Funk, M., and Chisholm, D., World Health Assembly adopts comprehensive mental health action plan 2013–2020, Lancet, 2013, vol. 381, pp. 1970–1971.

    PubMed  Article  Google Scholar 

  3. 3

    Lage, O.M., Ramos, M.C., Calisto, R., Almeida, E., Vasconcelos, V., and Vicente, F., Current screening methodologies in drug discovery for selected human diseases, Mar. Drugs, 2018, vol. 16, no. 8, pp. 279. https://doi.org/10.3390/md16080279

    CAS  Article  PubMed Central  Google Scholar 

  4. 4

    Kenney, D., and Borisy, G., Thomas Hunt Morgan at the Marine Biological Laboratory: naturalist and experimentalist, Genetics, 2009, vol. 181, no. 3, pp. 841–846.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Adams, M., Celniker, S., Holt, R., Evans, C., Gocayne, J., Amanatides, P., Scherer, S., Li, P., Hoskins, R., Galle, R., et al., The genome sequence of Drosophila melanogaster,Science, 2000, vol. 287, no. 5461, pp. 2185–2195.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Pandey, U. and Nichols, C.D., Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery, Pharmacol. Rev., 2011, vol. 63, no. 2, pp. 411–436.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Millburn, G., Crosby, M., Gramates, L., and Tweedie, S., FlyBase portals to human disease research using Drosophila models, Dis. Models Mech., 2016, vol. 9, no. 3, pp. 245–252.

    CAS  Article  Google Scholar 

  8. 8

    Takano-Shimizu-Kouno, T., and Ohsako, T., Humanized flies and resources for cross-species study, Adv. Exp. Med. Biol., 2018, vol. 1076, pp. 277–288, https://doi.org/10.1007/978-981-13-0529-0_15

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Benzer, S., From the gene to behavior, JAMA, 1971, vol. 15, no. 7, pp. 1015–1022.

    Article  Google Scholar 

  10. 10

    Mohylyak, I. and Chernyk, Ya., Functioning of glia and neurodegeneration in Drosophila melanogaster, Cytol. Genet., 2017, vol. 51, pp. 202–213.

    Article  Google Scholar 

  11. 11

    Andretic, R., Kim, Y., Jones, F., Han, K., and Greenspan, R., Drosophila D1 dopamine receptor mediates caffeine-induced arousal, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 51, pp. 20392–20397. https://doi.org/10.1073/pnas.0806776105

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Wolf, M. and Rockman, H., Drosophila melanogaster as a model system for genetics of postnatal cardiac function, Drug Discov. Today Dis. Models, 2008, vol. 5, no. 3, pp. 117–123.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Bilder, D., and Irvine, K., Taking stock of the Drosophila research ecosystem, Genetics, 2017, vol. 206, no. 3, pp. 1227–1236.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Stocker, H. and Gallant, P., Getting started: an overview on raising and handling Drosophila,Methods Mol. Biol., 2008, vol. 420, pp. 27–44.

    PubMed  Article  Google Scholar 

  15. 15

    St Johnston, D., The art and design of genetic screens: Drosophila melanogaster,Nat. Rev. Genet., 2002, vol. 3, no. 3, pp. 176–88.

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Bokel, C., EMS screens: From mutagenesis to screening and mapping, Methods Mol. Biol., 2008, vol. 420, pp. 119–138.

    PubMed  Article  Google Scholar 

  17. 17

    Moulton, M. and Letsou, A., Modeling congenital disease and inborn errors of development in Drosophila melanogaster,Dis. Models Mech., 2016, vol. 9, no. 3, pp. 253–269.

    CAS  Article  Google Scholar 

  18. 18

    Hales, K., Korey, C., Larracuente, A., and Roberts, D., Genetics on the fly: a primer on the Drosophila model system, Genetics, 2015, vol. 201, no. 3, pp. 815–842.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Greenspan, R.J., Fly Publishing. The Theory and Practice of Drosophila Genetics, New York: Cold Spring Harbor Lab. Press, 2000.

    Google Scholar 

  20. 20

    Hummel, T. and Klambt, C., P-element mutagenesis, Methods Mol. Biol., 2008, vol. 420, pp. 97–117.

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Cooley, L., Berg, C., and Spradling, A., Controlling P element insertional mutagenesis, Trends Genet., 1988, vol. 4, no. 9, pp. 254–258.

    CAS  PubMed  Article  Google Scholar 

  22. 22

    O’Hare, K. and Rubin, G.M., Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome, Cell, 1983, vol. 34, no. 1, pp. 25–35.

    PubMed  Article  Google Scholar 

  23. 23

    Rubin, G.M. and Spradling, A.C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, vol. 218, no. 4570, pp. 348–353.

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Venken, K.J. and Bellen, H.J., Transgenesis upgrades for Drosophila melanogaster, Development, 2007, vol. 134, no. 20, pp. 3571–3584.

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Karess, R.E. and Rubin, G.M., Analysis of P transposable element functions in Drosophila,Cell, 1984, vol. 38, no. 1, pp. 135–146.

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Brand, A.H. and Perrimon, N., Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 1993, vol. 118, no. 2, pp. 401–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Limmer, S., Weiler, A., Volkenkoff, A., Babatz, F., and Klambt C., The Drosophila blood-brain barrier: development and function of a glial endothelium, Front. Neurosci., 2014, vol. 8. https://doi.org/10.3389/fnins.2014.00365

  28. 28

    Buchanan, R.L. and Benzer, S., Defective glia in the Drosophila brain degeneration mutant drop-dead, Neuron, 1993, vol. 10, no. 5, pp. 839–850.

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M., and Benzer, S., The swiss cheese mutant cause glial hyperwrapping and brain degeneration in Drosophila,J. Neurosci., 1997, vol. 17, pp. 7425–7432.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Lush, M., Li, Y., Read, D., Willis, A., and Glynn, P., Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man, Biochem. J., 1998, vol. 332, pp. 1–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Rainier, S., Bui, M., Mark, E., Thomas D., Tokarz D., Ming L., Delaney, C, Richardson, R., Albers, J., Matsunami, N., Stevens, J., Coon, H., Leppert, M., and Fink, J., Neuropathy target esterase gene mutations cause motorneuron disease, Am. J. Hum Genet., 2008, vol. 82, pp. 780–785.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Synofzik, M., Gonzalez, M., Lourenco, C., Coutelier, M., Haack, T., Rebelo, A., Hannequin, D., Strom, T., Prokisch, H., Kernstock, C., Durr, A., Schöls, L., Lima-Martínez., M., Farooq, A., Schiile, R., Stevanin, G., Marques, W., and Ziichner, S., PNPLA6 mutations cause Boucher-Neuha-user and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum, Brain, 2014, vol. 137, pp. 69–77.

    PubMed  Article  Google Scholar 

  33. 33

    Finley K.D., Edeen P.T., Cumming R.C., Mardahl-Dumesnil M.D., Taylor B.J., Rodriguez, M., Hwang, C., Benedetti, M., and McKeown, M., blue cheese mutations define a novel, conserved gene involved in progressive neural degeneration, J. Neurosci., 2003, vol. 23, no. 4, pp. 1254–1264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Lim, A. and Kraut R., The Drosophila BEACH family protein, blue cheese, links lysosomal axon transport with motor neuron degeneration, J. Neurosci., 2009, vol. 29, no. 4, pp. 951–963, .https://doi.org/10.1523/JNEUROSCI.2582-08.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kadir, R., Harel, T., Markus, B., Perez, Y., Bakhrat, A., Cohen, I., Volodarsky, M., Feintsein-Linial, M., Chervinski, E., Zlotogora, J., Sivan, S., Birnbaum, R. Y., Abdu, U., Shalev, S., and Birk, O., S. ALFY-controlled DVL3 autophagy regulates Wnt signaling, determining human brain size, PLoS Genet., 2016. https://doi.org/10.1371/journal.pgen.1005919

  36. 36

    Pei, Z., Oey, N., Zuidervaart, M., Jia, Z., Li, Y., Steinberg, S., Smith, K., and Watkins, P., The acyl-CoA synthetase “bubblegum” (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation, J. Biol. Chem., 2003, vol. 278, no. 47, pp. 47070–47078.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Sivachenko, A., Gordon, H., Kimball, S., Gavin, E., Bonkowsky, J., and Letsou, A., Neurodegeneration in a Drosophila model of drenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases, Dis. Model., 2016, vol. 9, no. 4, pp. 377–387. https://doi.org/10.1242/dmm.022244

    CAS  Article  Google Scholar 

  38. 38

    Asheuer, M., Bieche, I., Laurendeau, I., Moser, A., Hainque, B., Vidaud, M., Aubourg, P., Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy, Hum. Mol. Genet., 2005, vol. 14, pp. 1293–1303.

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Conway, S., Sansone, C., Benske, A., Kentala, K., Billen, J., Vanden Broeck J., and Blumenthal, E., Pleiotropic and novel phenotypes in the Drosophila gut caused by mutation of drop-dead, J. Insect. Physiol., 2018, vol. 105, pp. 76–84. https://doi.org/10.1016/j.jinsphys.2018.01.007

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Freeman, M., Dobritsa, A., Gaines, P., Segraves, W., and Carlson, J., The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila,Development, 1999, vol. 126, no. 20, pp. 4591–4602.

    CAS  PubMed  Google Scholar 

  41. 41

    Paul, A., Drecourt, A., Petit, F., Deguine, D.D., Vasnier, C., Oufadem, M., Masson, C., Bonnet, C., Masmoudi, S., Mosnier, I., Mahieu, L., Bouccara, D., and 16 others, FDXR mutations cause sensorial neuropathies and expand the spectrum of mitochondrial Fe-S-synthesis diseases, Am. J. Hum. Genet., 2017, vol. 101, pp. 630–637.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Roos, J., Hummel, T., Ng. N., Klambt, C., and Davis, G., Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth, Neuron, 2000, vol. 26, no 2, pp. 371–382.

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Brazill, J., Cruz, B., Zhu, Y., and Zhai, R., Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy, Dis. Model Mech., 2018, vol. 11, no. 6, pii: dmm032938. https://doi.org/10.1242/dmm.032938

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Halpain, S. and Dehmelt, L., The MA P1 family of microtubule-associated proteins, Genome Biol., 2006, vol. 7, no. 6, p. 224. https://doi.org/10.1186/gb-2006-7-6-224

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Cook, M., Bolkan, B., and Kretzschmar, D., Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig, PLoS One, 2014, vol. 9, no. 2, e89847. https://doi.org/10.1371/journal.pone.0089847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Morita, H., Rehm, H.L., Menesses, A., McDonough, B., Roberts, A.E., Kucherlapati, R., Towbin, J.A., Seidman, J.G., Seidman, C.E. Shared genetic causes of cardiac hypertrophy in children and adults, New Eng. J. Med., 2008, vol. 358, pp. 1899–1908.

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Botella, J., Ulschmid, J., Gruenewald, C., Moehle, C., Kretzschmar, D., Becker, K., and Schneuwly, S., The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration, Curr. Biol., 2004, vol. 14, no. 9, pp. 782–786.

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Boynton, T. and Shimkets, L., Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases, Genes Dev., 2015, vol. 29, no. 18, pp. 1903–1914, https://doi.org/10.1101/gad.268482.115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Skorczyk-Werner, A., Pawłowski, P., Michalczuk, M., Warowicka, A., Wawrocka, A., Wicher, K., Bakunowicz-Łazarczyk, A., and Krawczyński, M., Fundus albipunctatus: review of the literature and report of a novel RDH5 gene mutation affecting the invariant tyrosine (p.Tyrl75Phe), Appl. Genet., 2015, vol. 56, no. 3, pp. 317–327. https://doi.org/10.1007/sl3353-015-0281-x

    CAS  Article  Google Scholar 

  50. 50

    Celotto, A., Liu, Z., Vandemark, A., and Palladino, M., A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease, Brain Behav., 2012, vol. 2, no 4, pp. 424–434. https://doi.org/10.1002/brb3.73

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Vitushynska, M.V., Matiytsiv, N.P., and Chernyk, Y., Sensitivity to the oxidative stress conditions lifespan and neurodegenerative changes in the brain structure of Drosophila melanogaster superoxide dismutase mutants, Visn. Lviv Univ.,Ser. Biol., 2013, vol. 62, pp. 108–116.

    Google Scholar 

  52. 52

    De Rose, F., Marotta, R., Talani, G., Catelani, T., Solari, P., Poddighe, S., Borghero, G., Marrosu, F., Sanna, E., Kasture, S., Acquas, E., and Liscia, A., Differential effects of phytotherapic preparations in the hSODl Drosophila melanogaster model of ALS, Sci. Rep., 2017, vol. 7. https://doi.org/10.1038/srep41059

  53. 53

    Hebbar, S., Khandelwal, A., Jayashree, R., Hindle, S., Chiang, Y., Yew, J., Sweeney, S., and Schwudke, D., Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders, Mol. Biol. Cell, 2017, vol. 8, no. 26, pp. 3728–3740. https://doi.org/10.1091/mbc.E16-09-0674

    Article  Google Scholar 

  54. 54

    Miihlig-Versen, M., da Cruz, A., Tschäpe, J., Moser, M., Biittner, R., Athenstaedt, K., Glynn, P., and Kretzschmar, D., Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila,J. Neurosci., 2005, vol. 25, no. 11, pp. 2865–2873.

    Article  CAS  Google Scholar 

  55. 55

    Dutta, S., Rieche, F., Eckl, N., Duch, C., and Kretzschmar, D., Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function, Dis. Model Mech., 2016, vol. 9, no. 3, pp. 283–294. https://doi.org/10.1242/dmm.022236

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ryabova, E., Matiytsiv, N., Trush, O., Mohylyak, I., Kislik, G., Melentev, P., and Sarantseva, S., Swiss cheese, Drosophila ortholog of hereditary spastic paraplegia gene NTE, maintains neuromuscular junction development and microtubule network, in Drosophila melanogaster—Model for Recent Advances in Genetics and Therapeutics, Perveen, F.K., Ed., InTech, 2018. https://doi.org/10.5772/intechopen.73077

    Google Scholar 

  57. 57

    Crowther, D., Kinghorn, K., Miranda, E., Page, R., Curry, J., Duthie, F., Gubb, D., and Lomas, D., Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease, Neuroscience, 2005, vol. 132, pp. 123–135.

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Singh, S., Srivastav, S., Yadav, A., and Srikrishna, S., Knockdown of APPL mimics transgenic Ap induced neuro-degenerative phenotypes in Drosophila,Neurosci. Lett., 2017, vol. 648, pp. 8–13. https://doi.org/10.1016/j.neulet.2017.03.030

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Luheshi, L., Tartaglia, G., Brorsson, A., Pawar, A., Watson, I., Chiti, F., Vendruscolo, M., Lomas, D., Dobson, C., and Crowther, D., Systematic in vivo analysis of the intrinsic determinants of amyloid beta pathogenicity, PLoS Biol., 2007. doi.org/https://doi.org/10.1371/journal.pbio.0050290

  60. 60

    Saburova, E., Vasiliev, A., Kravtsova, V., Ryabova, E., Zefirov, A., Bolshakova, O., Sarantseva, S., and Krivoi, I., Human APP gene expression alters active zone distribution and spontaneous neurotransmitter release at the Drosophila larval neuromuscular junction, Neural. Plast., 2017. https://doi.org/10.1155/2017/9202584

  61. 61

    Wentzell, J., Bolkan, B., Carmine-Simmen, K., Swanson, T., Musashe, D., and Kretzschmar, D., Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration, Neurobiol. Dis., vol. 46, no. 1, pp. 78–87. https://doi.org/10.1016/j.nbd.2011.12.047

  62. 62

    Seidner, G., Ye, Y., Faraday, M., Alvord, W., and Fortini, M., Modeling clinically heterogeneous presenilin mutations with transgenic Drosophila,Curr. Biol., 2006, vol. 16, pp. 1026–1033.

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Kang, J., Shin, S., Perrimon, N., and Shen, J., An evolutionarily conserved role of presenilin in neuronal protection in the aging Drosophila brain, Genetics, 2017, vol. 206, no. 3, pp. 1479–1493. https://doi.org/10.1534/genetics.116.196881

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Chee, F., Mudher, A., Cuttle, M., Newman, T., MacKay, D., Lovestone, S., and Shepherd, D., Overexpression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions, Neurobiol. Dis., 2005, vol. 20, pp. 918–928.

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Gorsky, M., Burnouf, S., Sofola-Adesakin, O., Dols, J., Augustin, H., Weigelt, C., Grönke, S., and Partridge, L., Pseudoacetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity, Sci. Rep., 2017, vol. 7. no 1, p. 9984. https://doi.org/10.1038/s41598-017-10225-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Talmat-Amar, Y., Arribat, Y., and Parmentier, M., Vesicular axonal transport is modified in vivo by Tau deletion or overexpression in Drosophila, Int. J. Mol. Sci., 2018, vol. 19, no 3, https://doi.org/10.3390/ijms19030744

  67. 67

    Auluck, P., and Bonini, N., Pharmacological prevention of Parkinson disease in Drosophila,Nat. Med., 2002, vol. 8, pp. 1185–1186.

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Mohite, G., Dwivedi, S., Das, S., Kumar, R., Paluri, S., Mehra, S., Ruhela, N.,S., Jha, N., and Maji, S., Parkinson’s disease associated α-synuclein familial mutants promote dopaminergic neuronal death in Drosophila melanogaster,ACS Chem. Neurosci., 2018, vol. 9, no. 11, pp. 2628–2638. https://doi.org/10.1021/cschemneuro.8b00107

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Sang, T., Chang, H., Lawless, G., Ratnaparkhi, A., Mee, L., Ackerson, L., Maidment, N., Krantz, D., and Jackson, G., A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine, J. Neurosci., 2007, vol. 27, pp. 981–992.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Cornelissen, T., Vilain, S., Vints, K., Gounko, N., Verstreken, P., and Vandenberghe, W., Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila,Elife, 2018, vol. 9, no. 7. https://doi.org/10.7554/eLife.35878

  71. 71

    Zhuang, N., Li, L., Chen, S., and Wang, T., PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control, Cell Death Dis., 2016, vol. 7, no. 12. https://doi.org/10.1038/cddis.2016.396

  72. 72

    Gunawardena, S., Her, L., Brusch, R., Laymon, R., Niesman, I., Gordesky-Gold, B., Sintasath, L., Bonini, N., and Goldstein, L., Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila,Neuron, 2003, vol. 40, pp. 25–40.

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Calpena, E., Lopez Del Amo, V., Chakraborty, M., Llamusi, B., Artero, R., Espinos, C., and Galindo, M., The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway, Dis. Model. Mech., 2018, vol. 11, no 1. https://doi.org/10.1242/dmm.029082

  74. 74

    Weiss, K., and Littleton, J., Characterization of axonal transport defects in Drosophila Huntingtin mutants, J. Neurogenet., 2016, vol. 30, pp. 212–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Babcock, D. and Ganetzky, B., Transcellular spreading of huntingtin aggregates in the Drosophila brain, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 39. https://doi.org/10.1073/pnas.1516217112

  76. 76

    Watson, M., Lagow, R., Xu, K., Zhang, B., and Bonini, N., A Drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1, J. Biol. Chem., 2008, vol. 283, pp. 24972–24981.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Cummings, J., Lee, G., Ritter, A., and Zhong, K., Alzheimer’s disease drug development pipeline, Alzheimers Dement. (NY), 2018, vol. 4, pp. 195–214.https://doi.org/10.1016/j.trci.2018.03.009

    Article  Google Scholar 

  78. 78

    Fernandez-Funez, P., de Mena, L., and Rincon-Limas, D.E., Modeling the complex pathology of Alzheimer’s disease in Drosophila, Exp. Neurol., 2015, vol. 274, pt. A, pp. 58–71.

  79. 79

    Chatterjee, S., Sang, T., Lawless, G., and Jackson, G., Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model, Hum. Mol. Genet., 2009, vol. 18, no 1, pp. 164–177.

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Kosmidis, S., Grammenoudi,S., Papanikolopoulou, K., and Skoulakis, E., Differential effects of tau on the integrity and function of neurons essential for learning in Drosophila,J. Neurosci., 2010, vol. 30, no. 2, pp. 464–477.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Frost B., Hemberg M., Lewis J., Feany M.B., Tau promotes neurodegeneration through global chromatin relaxation, Nat. Neurosci., 2014, vol. 17, no. 3, pp. 357–366.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Cowan, C., Bossing, T., Page, A., Shepherd, D., and Mudher, A., Soluble hyperphosphorylated tau causes micro-tubule breakdown and functionally compromises normal tau in vivo, Acta Neuropathol., 2010, vol. 120, no. 5, pp. 593–604.

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Cacabelos, R., Parkinson’s disease: from pathogenesis to pharmacogenomics, Int. J. Mol. Sci., 2017, vol. 18, no. 3. https://doi.org/10.3390/ijms18030551

  84. 84

    Ishizawa, T., Mattila, P., Davies, P., Wang, D., and Dickson, D., Colocalization of tau and alpha-synuclein epitopes in Lewy bodies, J. Neuropathol. Exper. Neurol., 2003, vol. 62, no. 4, pp. 389–397.

    CAS  Article  Google Scholar 

  85. 85

    Michel, P., Hirsch, E., and Hunot, S., Understanding dopaminergic cell death pathways in Parkinson disease, Neuron, 2016, vol. 90, no 4, pp. 675–669.

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Shulman, J. and De Jager, PL., Evidence for a common pathway linking neurodegenerative disease, Nat. Genet., 2009, vol. 41, no. 12, pp. 1261–1262.

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Steffan, J., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Kazantsev, A., Schmidt, E., Zhu, Y., Greenwald, M., Kurokawa, R., Housman, D., Jackson, G., Marsh, J., Thompson, L., Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila,Nature, 2001, vol. 413, no. 6857, pp. 739–743.

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Casci, I., and Pandey, U., A fruitful endeavor: modeling ALS in the fruit fly, Brain Res., 2015, vol. 1607, pp. 47–74.

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Nassel, D., Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila,Front. Cell Neurosci., 2018. https://doi.org/10.3389/fncel.2018.00083

  90. 90

    Chad, M., Artymovych, N., Makarenko, O., and Matiytsiv, N., Effects of mitochondrin-2 on the dynamics of degeneration of brain tissues in Drosophila with an altered function of the swiss cheese gene, Neurophysiology, 2014, vol. 6, pp. 519–524.

    Google Scholar 

  91. 91

    Agrell, I. and Lundquist, A. Physiological and biochemical changes during insect development; in The Physiology of Insecta, Rockstein, M., Ed., New York: Academic Press, 1973, vol. 1, pp. 159–233.

    Google Scholar 

  92. 92

    Nichols, C., Ronesi, J., Pratt, W., and Sanders-Bush, E., Hallucinogens and Drosophila: linking serotonin receptor activation to behavior, Neuroscience, 2002, vol. 115, pp. 979–984.

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Wang, L., Hagemann, T., Messing A., and Feany, M., An in vivo pharmacological screen identifies cholinergic signaling as a therapeutic target in glial-based nervous system disease, J. Neurosci., 2016, vol. 36, no. 5, pp. 1445–1455. https://doi.org/10.1523/JNEUROSCI.0256-15.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Dzitoyeva, S., Dimitrijevic, N., and Manev, H., Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 5485–5490.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Uttara, B., Singh, A., Zamboni, P., and Mahajan, R.T., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 2009, vol. 7, pp. 65–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Angelova, P.R. and Abramov, A.Y., Role of mitochondrial ROS in the brain: from physiology to neurodegeneration, FEBS Lett., 2018, vol. 592, no. 5, pp. 692–702. https://doi.org/10.1002/1873-3468.12964

    CAS  Article  PubMed  Google Scholar 

  97. 97

    Oswald, M.C.W., Garnham, N., Sweeney, S.T., and Landgraf, M., Regulation of neuronal development and function by ROS, FEBS Lett., 2018, vol. 592, no. 5, pp. 679–691. https://doi.org/10.1002/1873-3468.12972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Poljsak, B., Šuput, D., and Milisav, I., Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants, Oxid. Med. Cell. Longev., 2013, article ID 956792.

  99. 99

    Mathur, S., and Hoskins, C., Drug development: lessons from nature, Biomed. Rep., 2017, vol. 6, pp. 612–614.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Harvey, A., Edrada-Ebel, R., and Quinn, R., The reemergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov., 2015, vol. 14, pp. 111–129.

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Lakkappa, N., Krishnamurthy, P., M D P., Hammock, B., and Hwang, S., Soluble epoxide hydrolase inhibitor, APAU, protects dopaminergic neurons against rotenone induced neurotoxicity: implications for Parkinson’s disease, Neurotoxicology, 2018, vol. 70, pp. 135–145. https://doi.org/10.1016/j.neuro.2018.11.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Siddique, Y., Naz, F., and Jyoti S., Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease, Acta Biol. Hung., 2018, vol. 69, no. 2, pp. 115–124. doi 10.1556/018.69.2018.2.1

  103. 103

    Phom, L., Achumi, B., Alone, D., Muralidhara, and Yenisetti, S., Curcumin’s neuroprotective efficacy in Drosophila model of idiopathic Parkinson’s disease is phase specific: implication of its therapeutic effectiveness, Rejuvenation Res., 2014, vol. 7, no. 6, pp. 481–489. https://doi.org/10.1089/rej.2014.1591

    CAS  Article  Google Scholar 

  104. 104

    Nguyen, T., Vuu, M., Huynh, M., Yamaguchi, M., Tran, L., and Dang, T., Curcumin effectively rescued Parkinson’s disease-like phenotypes in a novel Drosophila melanogaster model with dUCH knockdown, Oxid. Med. Cell Longev., 2018. https://doi.org/10.1155/2018/2038267

  105. 105

    Chongtham, A. and Agrawal, N., Curcumin modulates cell death and is protective in Huntington’s disease model, Sci. Rep., 2016, vol. 6, p. 18736. https://doi.org/10.1038/srep18736

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Rao, S., Muralidhara, Yenisetti, S., and Rajini, P., Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism, Neurotoxicology, 2016, vol. 52, pp. 230–242. https://doi.org/10.1016/j.neuro.2015.12.010

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Varga, J., Dér, N., Zsindely, N., and Bodai, L., Green tea infusion alleviates neurodegeneration induced by mutant Huntingtin in Drosophila,Nutr. Neurosci., 2018. https://doi.org/10.1080/1028415X.2018.1484021

  108. 108

    Ng, C., Basil, A., Hang, L., Tan, R., Goh, K., O’Neill, S., Zhang, X., Yu, F., and Lim, K., Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson’s disease, Neurobiol. Aging, 2017, vol. 55, pp. 33–37. https://doi.org/10.1016/j.obiolaging.2017.03.017

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Abolaji, A., Adedara, A., Adie, M., Vicente-Crespo, M., and Farombi, E., Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster,Biochem. Biophys. Res. Commun., 2018, vol. 503, no. 2, pp. 1042–1048. https://doi.org/10.1016/j.bbrc.2018.06.114

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Wu, Z., Wu, A., Dong, J., Sigears, A., and Lu, B., Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitophagy, Exp. Gerontol., 2018, vol. 113, pp. 10–17. https://doi.org/10.1016/j.exger.2018.09.014

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Büttner, S., Broeskamp, F., Sommer, C., Markaki, M., Habernig, L., Alavian-Ghavanini, A., Carmona-Gutierrez, D., Eisenberg, T., Michael, E., Kroemer, G., Tavernarakis, N., Sigrist, S., and Madeo, F., Spermidine protects against α-synuclein neurotoxicity, Cell Cycle, 2014, vol. 13, no. 24, pp. 3903–3908. https://doi.org/10.4161/15384101.2014.973309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Jahromi, S., Haddadi, M., Shivanandappa, T., and Ramesh, S., Attenuation of neuromotor deficits by natural antioxidants of Decalepis hamiltonii in transgenic Drosophila model of Parkinson’s disease, Neuroscience, 2015, vol. 293, pp. 136–150.

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Briffa, M., Ghio, S., Neuner, J., Gauci, A.J., Cacciottolo, R., Marchal, C., Caruana, M., Cullin, C., Vassallo, N., Cauchi, R., Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies, Neurosci. Lett., 2017, vol. 638, pp. 12–20.

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Burnstock, G., Do some nerve cells release more than one transmitter?, Neuroscience, 1976, vol. 1, pp. 239–248.

  115. 115

    Vaaga, C., Borisovska, M., and Westbrook, G., Dual-transmitter neurons: functional implications of co-release and co-transmission, Curr. Opin. Neurobiol., 2014, vol. 29, pp. 25–32. https://doi.org/10.1016/j.conb.2014.04.010

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Nusbaum, M., and Blitz, D., Neuropeptide modulation of microcircuits, Curr. Opin. Neurobiol., 2012, vol. 22, pp. 592–601. https://doi.org/10.1016/j.conb.2012.01.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Glantz, R., Miller, C., and Nдssel, D., Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors, J. Neurosci., 2000, vol. 20, pp. 1780–1790.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Nässel, D., Neuropeptide signaling near and far: how localized and timedis the action of neuropeptides in brain circuits?, Invert. Neurosci., 2009, vol. 9, pp. 57–75. https://doi.org/10.1007/s10158-009-0090-1

    CAS  Article  PubMed  Google Scholar 

  119. 119

    Veenstra, J., Agricola, H., and Sellami, A., Regulatory peptides in fruit fly midgut, Cell Tissue Res., 2008, vol. 334, pp. 499–516. https://doi.org/10.1007/s00441-008-0708-3

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Zandawala, M., Marley, R., Davies, S. A., and Nässel, D., Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila,Cell Mol. Life. Sci., 2018, vol. 75, pp. 1099–115. https://doi.org/10.1007/s00018-017-2682-y

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Sharma, H., Sharma, A., Mössler, H., Muresanu, D., Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermia-induced neurotoxicity: Modulatory roles of comorbidity factors and nanoparticle intoxication, Int. Rev. Neurobiol., 2012, vol. 102, p. 249.

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Makarenko, A., Kul’chikov, A., and Morozov, S., Medicinal preparation for treatment of hypoxic and toxic-mitochondrial abnormalities and the techniquefor its synthesis, Inventors Certificate no. 2405558 Russia, Published December 10, 2010, Byull. Izobret., 2010, no. 23.

Download references


This work was partially supported by VolkswagenStiftung research grant.

Author information



Corresponding author

Correspondence to N. P. Matiytsiv.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Tarasyuk

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matiytsiv, N.P., Chernyk, Y.I. Drosophila melanogaster as a Model System for the Study of Human Neuropathy and the Testing of Neuroprotectors. Cytol. Genet. 54, 243–256 (2020). https://doi.org/10.3103/S0095452720030081

Download citation


  • Drosophila
  • neurodegeneration
  • neuroprotectors
  • brain
  • UAS/Gal4 system