Skip to main content
Log in

Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2019

This article has been updated

Abstract

Deschampsіa antarctіca, one of the two angiosperm species growing in the extreme conditions of Antarctica, is a unique model for studying the relationship between genetic polymorphism and such factors of evolution as isolation, migration and adaptation to new environmental conditions. Molecular markers represent a useful tool for the investigation of these questions. To examine the potential of 5S rDNA to be used for the discrimination of D. antarctica populations we cloned and sequenced this genomic region for plants from three populations of this species from Maritime Antarctica. It was shown that in the genome of D. antarctica at least two structural classes of 5S rDNA are present, which differ by numerous base substitutions and insertions/deletions in the intergenic spacer. Based on this structural polymorphism we propose to apply this region for the evaluation of the intraspecific genetic diversity of D. antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Change history

  • 18 April 2019

    The title of the article should read as follows:

    Molecular Organization of 5S Ribosomal DNА of <Emphasis Type="Italic">Deschampsia antarctica</Emphasis>

REFERENCES

  1. Parnikoza, I.Y., Maidanuk, D.N., and Kozeretska, I.A., Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts?, Cytol. Genet., 2007, vol. 41, no. 4, pp. 226–229. doi 10.3103/ S0095452707040068

    Article  Google Scholar 

  2. Mosyakin, S.L., Bezusko, L.G., and Mosyakin, A.S., Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint, Cytol. Genet., 2007, vol. 41, no. 5, pp. 308–316. doi 10.3103/S009545270705009X

    Article  Google Scholar 

  3. Fasanella, M., Premoli, A.C., Urdampilleta, J.D., Gonzalez, M.L., and Chiapella, J.O., How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae), Bot. J. Lin. Soc., 2017, vol. 185, no. 4, pp. 511–524. doi 10.1093/botlinnean/box070

    Article  Google Scholar 

  4. Chwedorzewska, K.J., Bednarek, P.T., and Puchalski, J., Molecular variation of Antarctic grass Deschampsia antarctica Desv. from King George Island (Antarctica), Acta Soc. Bot. Pol., 2004, vol. 73, no. 1, pp. 23–29.

    Article  CAS  Google Scholar 

  5. Wouw, M.V.D., Dijk, P.V., and Huiskes, A.H., Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.), J. Biogeogr., 2008, vol. 35, no. 2, pp. 365–376. doi 10.1111/j.1365-2699.2007.01784.x

  6. Andreev, I.O., Spiridonova, E.V., Kyryachenko, S.S., and Parnikoza, I.Yu., Population-genetic analysis of Deschampsia antarctica from two regions of Maritime Antarctica, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 208–210. doi 10.3103/s00963-92510040243

    Article  Google Scholar 

  7. Andreev, I.O., Volkov, R.A., Kozeretska, I.A., Parnikoza, I.Yu., Spiridonova, K.V., Kiryachenko, S.S., Maydanyuk, D.M., and Kunakh, V.A., Geographical gradient of genetic diversity of Deschampsia antarctica Desv. from the Maritime Antarctic, Ukr. Antarctic J., 2012, nos. 10–11, pp. 282–288.

  8. Volkov, R.A., Kozeretska, I.A., Kyryachenko, S.S., Andreev, I.O., Maidanyuk, D.N., Parnikoza, I.Yu., and Kunakh, V.A., Molecular evolution and variability of ITS1 and ITS2 in populations of Deschampsia antarctica from two regions of the Maritime Antarctic, Polar Sci., 2010, vol. 4, no. 3, pp. 469–478. doi 10.1016/j.polar.2010.04.011

  9. González, M.L., Urdampilleta, J.D., Fasanella, M., Premoli, A.C., and Chiapella, J.O., Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations, Polar Biol., 2016, vol. 39, no. 9, pp. 1663–1677. doi 10.1007/ s00300-016-1890-5

    Article  Google Scholar 

  10. González, M.L., Chiapella, J.O., and Urdampilleta, J.D., Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae), Polar Biol., 2017, vol. 41, no. 3, pp. 457–468. doi 10.1007/s00300-017-2205-1

    Article  Google Scholar 

  11. Röser, M., Winterfeld, G., Grebenstein, B., and Hemleben, V., Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae), Mol. Phylogen. Evol., 2001, vol. 21, no. 2, pp. 198–217. doi 10.1006/mpev.2001.1003

    Article  CAS  Google Scholar 

  12. Peng, Y.Y., Wei, Y.M., Baum, B.R., and Zheng, Y.L., Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137–154. doi 10.1139/G07-111

  13. Baum, B.R. and Feldman, M., Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum, Genome, 2010, vol. 53, no. 6, pp. 430–8. doi 10.1139/G10-017

  14. Baum, B.R., Edwards, T., and Johnson, A., Codependence of repetitive sequence classes in genomes: phylogenetic analysis of 5S rDNA families in Hordeum (Triticeae: Poaceae), Genome, 2010, vol. 53, no. 3, pp. 180–202. doi 10.1139/g09-096

    Article  CAS  PubMed  Google Scholar 

  15. Baum, B.R., Edwards, T., Mamuti, M., and Johnson, D.A., Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from the nuclear 5S rDNA sequences (Poaceae: Triticeae), Genome, 2012, vol. 55, no. 3, pp. 177–193. doi 10.1139/g2012-006

    Article  CAS  PubMed  Google Scholar 

  16. Volkov, R.A., Zanke, C., Panchuk, I.I., and Hemleben, V., Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding, Theor. Appl. Genet., 2001, vol. 103, no. 8, pp. 1273–1282. doi 10.1007/s001220100670

    Article  CAS  Google Scholar 

  17. Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, no. 3–4, pp. 187–206. doi 10.1007/s00606-009-0178-4

    Article  CAS  Google Scholar 

  18. Garcia, S., Garnatje, T., and Kovarik, A., Plant rDNA database: ribosomal DNA loci information goes online, Chromosoma, 2012, vol. 121, no. 4, pp. 389–394. doi 10.1007/s00412-012-0368-7

    Article  CAS  PubMed  Google Scholar 

  19. Tynkevich, Y.O., Nevelska, A.O., Chorney, I.I., and Volkov, R.A., Organization and variability of the 5S rDNA intergenic spacer of Lathyrus venetus, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2015, vol. 13, no. 1, pp. 81–87.

    Google Scholar 

  20. Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., Hosiawa-Baranska, M., Maluszynska, J., and Hemleben, V., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, no. 1, pp. 1–15. doi 10.1186/ s12870-017-0978-6

    Article  CAS  Google Scholar 

  21. Volkov, R.A., Medina, F.J., Zentgraf, U., and Hemleben, V., Molecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure, Progr. Bot., 2004, vol. 65, pp. 106–146.

    Article  CAS  Google Scholar 

  22. Cloix, C., Tutois, S., Mathieu, O., Cuvillier, C., Espagno, M.C., Picard, C., and Tourmente, S., Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms, Genome Res., 2000, vol. 10, no. 5, pp. 679–690. doi 10.1101/gr.10.5.679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coen, E.S., Thoday, J.M., and Dover, G., Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster, Nature, 1982, vol. 295, no. 5850, pp. 564–568.

    Article  CAS  PubMed  Google Scholar 

  24. Volkov, A.R. and Panchuk, I.I., 5S rDNA of Dactylis glomerata (Poaceae): molecular organization and taxonomic application, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2014, vol. 12, no. 1, pp. 3–11.

    Google Scholar 

  25. Rusak, O.O., Petrashchuk, V.I., Panchuk, I.I., and Volkov, R.A., Molecular organization of 5S rDNA in two Ukrainian populations of sycamore (Acer pseudoplatanus), Bull. Vavilov Soc. Genet. Breed. Ukraine, 2016, vol. 14, no. 2, pp. 216–220.

    Google Scholar 

  26. Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 69–76. doi 10.1007/BF00020088

    Article  CAS  PubMed  Google Scholar 

  27. Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugosa, Cytol. Genet., 2014, vol. 48, no. 1, pp. 1–6. doi 10.3103/ S0095452714010095

    Article  Google Scholar 

  28. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 1989.

    Google Scholar 

  29. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nuclec Acids Res., 1997, vol. 25, no. 17, pp. 3389–3402.

    Article  CAS  Google Scholar 

  31. Soreng, R.J., Peterson, P.M., Romschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I., and Morrone, O.A., A worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst. Evol., 2015, vol. 53, no. 2, pp. 117–137. doi 10.1111/jse.12150/epdf

    Article  Google Scholar 

  32. Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis, Heredity, 2007, vol. 99, no. 1, pp. 5–13. doi 10.1038/sj.hdy.6800964

    Article  CAS  PubMed  Google Scholar 

  33. Baum, B.R., Bailey, L.G., Belyayev, A., Raskina, O., and Nevo, E., The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes—a test on cultivated wheat and wheat progenitors, Genome, 2004, vol. 47, no. 3, pp. 590–599. doi 10.1139/g03-146

    Article  CAS  PubMed  Google Scholar 

  34. Amosova, A.V., Bolsheva, N.L., Zoshchuk, S.A., Twardovska, M.O., Yurkevich, O.Y., Andreev, I.O., Samatadze, T.E., Badaeva, E.D., Kunakh, V.A., and Muravenko, O.V., Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species, PLoS One, 2017, vol. 12, no. 4. e0175760. doi 10.1371/journal.pone.0175760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors express their gratitude to the National Antarctic Scientific Center of Ukraine and personally to Dr. I.A. Kozeretska (Taras Shevchenko Kyiv National University) for the material provided for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Volkov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchenko, O.O., Panchuk, І.І., Andreev, І.O. et al. Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica. Cytol. Genet. 52, 416–421 (2018). https://doi.org/10.3103/S0095452718060105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718060105

Keywords:

Navigation