Skip to main content
Log in

Histochemical Analysis of Tissue-Specific α-Tubulin Acetylation as a Response to Autophagy Induction by Different Stress Factors in Arabidopsis thaliana

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

In order to study the role of posttranslational α-tubulin acetylation in the realization of stressinduced autophagy, levels of α-tubulin acetylation in Arabidopsis thaliana plants subjected to abiotic stress, such as salt and osmotic stresses, starvation, or ultraviolet B irradiation, were determined by Western blot analysis. It was shown a significant increase in the levels of acetylated α-tubulin under autophagy development, moreover, a synergistic action of stressful factors and E-64, an autophagy inhibitor, attenuated this increase. In order to study tissue-specific character of this modification, an immunohistochemical analysis of α-tubulin acetylation in A. thaliana seedlings was conducted. These experiments demonstrated the tissuespecific character of α-tubulin acetylation induced by stress, particularly, it is most markedly manifested in young and meristematic tissues, as well as in root tissues (root cap, epidermis and pericycle cells). Obtained results can serve as a proof of the regulatory role of α-tubulin acetylation in the realization of autophagy as an adaptive response to the influence of stressful stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avin-Wittenberg, T., Honig, A., and Galili, G., Variations on a theme: plant autophagy in comparison to yeast and mammals, Protoplasma, 2012, vol. 249, no. 2, pp. 285–299. doi 10.1007/s00709-011-0296-z

    Article  PubMed  CAS  Google Scholar 

  2. Liu, Y. and Bassham, D.C., Autophagy: pathways for self-eating in plant cells, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 215–237. doi. org/10.1146/annurevarplant-042811-105441

    Article  PubMed  CAS  Google Scholar 

  3. Michaeli, S., Galili, G., Genschik, P., Fernie, A.R., and Avin-Wittenberg, T., Autophagy in plants-what’s new on the menu?, Trends Plant Sci., 2016, vol. 21, no. 2, pp. 134–144. doi 10.1016/j.tplants.2015.10.008

    Article  PubMed  CAS  Google Scholar 

  4. Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K., Autophagy in development and stress responses of plants, Autophagy, 2006, vol. 2, no. 1, pp. 2–11.

    Article  PubMed  CAS  Google Scholar 

  5. Batoko, H., Dagdas, Y., Baluska, F., and Sirko, A., Understanding and exploiting autophagy signaling in plants, Essays Biochem., 2017, vol. 61, no. 6, pp. 675–685. doi 10.1042/EBC20170034

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, P., Mugume, Y., and Bassham, D.C., New advances in autophagy in plants: regulation, selectivity and function, Semin. Cell Dev. Biol., 2017, pii S1084-9521(17)30129-5. doi 10.1016/j.semcdb.2017.07.018

    Google Scholar 

  7. Mackeh, R., Perdiz, D., Lorin, S., Codogno, P., and Pöus, C., Autophagy and microtubules-new story, old players, J. Cell Sci., 2013, vol. 126, no. 5, pp. 1071–1080. doi 10.1242/jcs.115626

    Article  PubMed  CAS  Google Scholar 

  8. Köchl, R., Hu, X.W., Chan, E.Y., and Tooze, S.A., Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes, Traffic, 2006, vol. 7, no. 2, pp. 129–145. doi 10.1111/j.1600-0854.2005.00368.x

    Article  PubMed  CAS  Google Scholar 

  9. Monastyrska, I., Rieter, E., Klionsky, D.J., and Reggiori, F., Multiple roles of the cytoskeleton in autophagy, Biol. Rev. Camb. Philos. Soc., 2009, vol. 84, no. 3, pp. 431–448. doi 10.1111/j.1469-185X.2009.00082.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Geeraert, C., Ratier, A., Pfisterer, S.G., Perdiz, D., Cantaloube, I., Rouault, A., Pattingre, S., Proikas-Cezanne, T., Codogno, P., and Pöus, C., Starvationinduced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation, J. Biol. Chem., 2010, vol. 285, no. 31, pp. 24184–24194. doi 10.1074/jbc.M109.091553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xie, R., Nguyen, S., McKeehan, W.L., and Liu, L., Acetylated microtubules are required for fusion of autophagosomes with lysosomes, BMC Cell Biol., 2010, vol. 11. doi.org/10.1186/1471-2121-11-89

  12. Lytvyn, D., Yemets, A., Bergounioux, C., and Blume, Ya.B., Development of autophagy in BY-2 (Nicotiana tabacum) cells is accompanied by acetylation of α-tubulin, Rep. Natl. Acad. Sci. Ukraine, 2013, vol. 5, pp. 179–185.

    Google Scholar 

  13. Olenieva, V., Lytvyn, D., Yemets, A., Bergounioux, C., and Blume, Y., Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana, Cell Biol. Int., 2017. doi 10.1002/cbin.10842

    Google Scholar 

  14. Lytvyn, D.I. and Blume, Ya.B., Microtubular Cytoskeleton in Autophagy and Programmed Cell Death Development in Plants, New York: Nova Sci. Publ., 2016, pp. 1–34.

    Google Scholar 

  15. Tran, H.T., Nimick, M., Uhrig, R.G., Templeton, G., Morrice, N., Gourlay, R., DeLong, A., and Moorhead, G.B., Arabidopsis thaliana histone deacetylase 14 (HDA14) is an α-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3, Plant J., 2012, vol. 71, no, pp. 263–272. doi 10.1111/j.1365-313X.2012.04984.x

    Article  PubMed  CAS  Google Scholar 

  16. Ding, Y. and Mou, Z., Elongator and its epigenetic role in plant development and responses to abiotic and biotic stresses, Front. Plant Sci., 2015, vol. 6. doi 10.3389/fpls.2015.00296

  17. Olenieva, V., Lytvyn, D., Yemets, A., and Blume, Ya.B., Influence of UV-B on expression profiles of genes involved in the development of autophagy by means of microtubules, Rep. Natl. Acad. Sci. Ukraine, 2018, vol. 1, pp. 100–109. doi 10.15407/dopovidi2018.01.100

    Article  CAS  Google Scholar 

  18. Lytvyn, D.I., Yemets, A.I., and Blume, Y.B., UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line, Environ. Exp. Bot., 2010, vol. 68, no. 1, pp. 51–57. doi 10.1016/j.envexpbot.2009.11.004

    Article  CAS  Google Scholar 

  19. Giannoutsou, E., Galatis, B., Zachariadis, M., and Apostolakos, P., Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band., Cytoskeleton, 2012, vol. 69, no. 4, pp. 252–265. doi 10.1002/cm.21020

    Article  PubMed  CAS  Google Scholar 

  20. Smertenko, A., Blume, Y., Viklicky, V., Opatrny, Z., and Draber, P., Post-translational modifications and multiple tubulin isoforms, Planta, 1997, vol. 201, no. 3, pp. 349–358. doi 10.1007/s004250050077

    Article  PubMed  CAS  Google Scholar 

  21. Nakagawa, U., Suzuki, D., Ishikawa, M., Sato, H., Kamemura, K., and Imamura, A., Acetylation of α-tubulin on Lys40 is a widespread post-translational modification in angiosperms, Biosci. Biotechnol. Biochem., 2013, vol. 77, no. 7, pp. 1602–1605. doi 10.1271/bbb.130261

    Article  PubMed  CAS  Google Scholar 

  22. Nakagawa, U., Kamemura, K., and Imamura, A., Regulated changes in the acetylation of α-tubulin on Lys40 during growth and organ development in fast plants, Brassica rapa L., Biosci. Biotechnol. Biochem., 2013, vol. 77, no. 11, pp. 2228–2233. doi.org/10.1271/bbb.130475

    Article  PubMed  CAS  Google Scholar 

  23. McEwan, D.G. and Dikic, I., The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation, Trends Cell Biol., 2011, vol. 21, no. 4, pp. 195–201. doi 10.1016/j.tcb.2010.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Popelka, H. and Klionsky, D.J., Post-translationally modified structures in the autophagy machinery: an integrative perspective, FEBS J., 2015, vol. 282, no. 18, pp. 3474–88. doi 10.1111/febs.13356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dubrovsky, J.G., Doerner, P.W., Colyn-Carmona, A., and Rost, T.L., Pericycle cell proliferation and lateral root initiation in Arabidopsis, Plant Physiol., 2000, vol. 124, no. 4, pp. 1648–1657. doi org/10.1104/pp.124.4.1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xiong, X., Xu, D., Yang, Z., Huang, H., and Cui, X., A single amino-acid substitution at lysine 40 of an Arabidopsis thaliana-tubulin causes extensive cell proliferation and expansion defects, J. Integr. Plant Biol., 2013, vol. 55, no. 3, pp. 209–220. doi 10.1111/jipb.12003

    Article  PubMed  CAS  Google Scholar 

  27. Dalwadi, U. and Yip, C.K., Structural insights into the function of Elongator, Cell Mol. Life Sci., 2018. doi 10.1007/s00018-018-2747-6

    Google Scholar 

  28. DeFraia, C. and Mou, Z., The role of the Elongator complex in plants, Plant Signal. Behav., 2011, vol. 6, no. 1, pp. 19–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Creppe, C., Malinouskaya, L., Volvert, M.L., Gillard, M., Close, P., Malaise, O., Laguesse, S., Cornez, I., Rahmouni, S., Ormenese, S., Belachew, S., Malgrange, B., Chapelle, J.P., Siebenlist, U., Moonen, G., Chariot, A., and Nguyen, L., Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin, Cell, 2009, vol. 136, no. 3, pp. 551–364. doi 10.1016/j.cell.2008.11.043

    Article  PubMed  CAS  Google Scholar 

  30. Nelissen, H., Fleury, D., Bruno, L., Robles, P., DeVeylder, L., Traas, J., Micol, J.L., Van Montagu, M., Inze, D., and Van Lijsebettens, M., The elongate mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 21, pp. 7754–7759. doi 10.1073/pnas.0502600102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lytvyn, D.I., Fedyna, V.D., Yemets, A.I., and Blume, Y.B., α-Tubulin acetylation influences on microtubule protein microenvironment under autophagy development in tobacco cells, in Factors in Exp. Evolution of Organisms, 2015, vol. 17, pp. 65–69.

    Google Scholar 

  32. Olenieva, V., Lytvyn, D., Yemets, A., and Blume, Ya.B., Influence of sucrose starvation, osmotic and salt stresses on expression profiles of genes involved in the development of autophagy by means of microtubules, Bull. Vavilov Soc. Genet. Breed. Ukraine, 2018, vol. 16, no. 2, pp. 174–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Lytvyn.

Additional information

Original Russian Text © D.I. Lytvyn, V.D. Olenieva, A.I. Yemets, Ya.B. Blume, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 4, pp. 3–13.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytvyn, D.I., Olenieva, V.D., Yemets, A.I. et al. Histochemical Analysis of Tissue-Specific α-Tubulin Acetylation as a Response to Autophagy Induction by Different Stress Factors in Arabidopsis thaliana. Cytol. Genet. 52, 245–252 (2018). https://doi.org/10.3103/S0095452718040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718040059

Keywords

Navigation