Skip to main content
Log in

Patterns of Allelic Diversity in Spring Wheat Populations by SSR-Markers

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Precise assessment of diversity in available breeding germplasm helps to preempt epidemics and abrupt environmental changes. Spring wheat germplasm consisting of 84 accessions including cultivars, breeding lines and landraces from various origins was scanned with 44 SSRs. For allele frequencies, allelic patterns, heterozygosity and polymorphism the selected population was divided in three subpopulations: (i) pre-green revolution (pre-1965), (ii) post-green revolution (post-1965), (iii) post-veery (post-2000). Alleles produced in pre-1965, post-1965 and post-2000 subpopulations were 115, 144 and 131, respectively. Mean PIC values for pre-1965, post-1965 and post-2000 subpopulations were 0.48, 0.52 and 051, respectively. Allelic patterns showed no locally common alleles in any of the subpopulation. The pre-1965 subpopulation had also no private allele, however, average number of private alleles decreased from post-1965 to post-2000 subpopulation. In case of effective alleles and Shannon’s information index trend was increasing from pre-1965 to post-1965 and then decreasing from post-1965 to post-2000. The decreasing trend alarms the reduced genetic diversity in wheat varieties developed after 2000. PCA and cluster analysis didn’t clearly differentiated subpopulations, though pre-1965 genotypes showed higher genetic distance from post-1965 and post-2000 subpopulations. The decreasing measures of genetic diversity in post-2000 wheat genotypes should be a concern for wheat breeders, therefore, all sources of broadening genetic diversity should be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reif, J.C., Zhang, E.P., Dreisigacker, S., Warburton, M.L., van Ginkel, M., Hoisington, D., Bohn, M., and Melchinger, A.E., Wheat genetic diversity trends during domestication and breeding, Theor. Appl. Genet., 2005, vol. 110, pp. 859–864.

    Article  CAS  PubMed  Google Scholar 

  2. Dalrymple, D.G., Development and Spread of High-Yielding Wheat Varieties in Developing Countries, 7th ed., Washington: US Agency for International Development, 1986.

    Google Scholar 

  3. Singh, R.P., Hodson, D.P., Espino, J.H., Jin, Y., Njau, P., Wanyera, R., Foessel, S.A.H., and Ward, R.W., Will stem rust destroy the world’s wheat crop?, Advan. Agron., 2008, vol. 98, pp. 271–309.

    Article  CAS  Google Scholar 

  4. Smale, M., Reynolds, M.P., Warburton, M., Skovmand, B., Trethowan, R., Singh, R.P., Ortiz-Monasterio, I., and Crossa, J., Dimensions of diversity in modern spring bread wheat in developing countries from 1965, Crop Sci., 2002, vol. 42, p. 1766.

    Article  Google Scholar 

  5. Sajjad, M., Khan, S.H., and Maqbool, R., Pedigree and SSR data analysis reveal dominant prevalence of few parents in pedigrees of Pakistani wheat varieties, Amer. J. Mol. Biol., 2015, vol. 5, pp. 1–6.

    Article  CAS  Google Scholar 

  6. Sajjad, M., Khan, S.H., Ahmad, M.Q., Rasheed, A., Mujeeb-Kazi, A., and Khan, I.A., Association mapping identifies QTLs on wheat chromosome 3A for yield related traits, Cereal Res. Commun., 2014, vol. 42, pp. 177–188.

    Article  CAS  Google Scholar 

  7. Sajjad, M., Khan, S.H., and Khan, A.S., Exploitation of germplasm for grain yield improvement in spring wheat (Triticum aestivum), Int. J. Agric. Biol., 2011, vol. 13, pp. 695–700.

    Google Scholar 

  8. Ahmad, M.Q., Khan, S.H., Sajjad, M., and Khan, I.A., Analysis of drought responsive traits in hexaploid wheat (Triticum aestivum L.), Pak. J. Agric. Sci., 2015, vol. 52, no. 3, pp. 701–707.

    Google Scholar 

  9. Rehman, A., Sajjad, M., Khan, S.H., Pena Bautista, R.J., and Khan, N.I., Lower tendency of allelic variation of Glu genes and absence of 1BL–1RS translocation in modern Pakistani wheats, Cereal Res. Commun., 2014, vol. 42, pp. 139–150.

  10. Rogowsky, P.M., Guidet, F.L., Langridge, P., Shepherd, K.W., and Koebner, R.D., Isolation and characterization of wheat–rye recombinants involving chromosome arm 1DS of wheat, Theor. Appl. Genet., 1991, vol. 82, pp. 537–544.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., and Sorrells, M.E., Optimising parental selection for genetic linkage maps, Genome, 1993, vol. 36.

  12. Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295.

    Article  Google Scholar 

  13. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas, J. and Michael, P., Statistica, Encyclopedia of Research Design, Salkind N., Ed., Thousand Oaks, 2010, pp. 1443–1445.

    Google Scholar 

  15. Liu, L., Wang, L., Yao, J., Zheng, Y., and Zhao, C., Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.), Mol. Plant Breed., 2010, vol. 1, no. 5. doi 10.5376/mpb.2010.01.0005

    Google Scholar 

  16. Yao, J., Wang, L., Liu, L., Zhao, C., and Zheng, Y., Association mapping of agronomic traits on chromosome 2A of wheat, Genetics, 2009, vol. 137, pp. 67–75.

    CAS  Google Scholar 

  17. Breseghello, F. and Sorrells, M.E., Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics, 2006, vol. 172, pp. 1165–1177.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shahzad, M., Khan, S.H., Khan, A.S., Sajjad, M., Rehman, A., and Khan, A.I., Identification of QTLs on chromosome 1b for grain quality traits in bread wheat (Triticum aestivum L.), Cytol. Genet., 2016, vol. 50, no. 2, pp. 89–95.

    Article  Google Scholar 

  19. Huang, Q., Borner, A., Roder, M.S., and Ganal, M., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Wang, X., Chen, P., and Liu, D., Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers, J. Genet. Genom., 2007, vol. 34, pp. 623–633.

    Article  CAS  Google Scholar 

  21. Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S., and Gupta, P.K., The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 584–592.

    CAS  Google Scholar 

  22. Medini, M., Hamza, S., Rebai, A., and Baum, M., Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers, Genet. Res. Crop Evol., 2005, vol. 52, no. 1, pp. 21–31.

    Article  CAS  Google Scholar 

  23. Roder, M.S., Wendehake, K., Korzum, V., Bredemeijer, G., Laborie, D., Bertand, L., Issac, P., Rendell, S., Jackson, J., Cooke, R.J., Vosman, B., and Ganal, M.W., Construction and analysis of a microsatellite-based database of European wheat varieties, Theor. Appl. Genet., 2002, vol. 106, pp. 67–73.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X., Xu, Y., Shah, T., Li, H., Han, Z., Li, J., and Yan, J., Comparison of SSRs and SNPs in assessment of genetic relatedness in maize, Genetics, 2011, vol. 139, pp. 1045–1054.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajjad.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, M., Khan, S.H. & Shahzad, M. Patterns of Allelic Diversity in Spring Wheat Populations by SSR-Markers. Cytol. Genet. 52, 155–160 (2018). https://doi.org/10.3103/S0095452718020081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718020081

Keywords

Navigation