Skip to main content
Log in

Effects of Exogenous Phytohormones on Spore Germination and Morphogenesis of Polystichum aculeatum (L.) Roth Gametophyte in vitro Culture

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The effects of exogenous phytohormones–gibberellic acid (GA3) and benzyl-aminopurine (BAP)–on the spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture were studied. In the control, four stages of gametophyte morphogenesis were determined and their periods were established. Spore germination and protonema formation of P. aculeatum occurred according to the Vittaria-type and prothalium development according to the Aspidium-type. The spore germination percentage depended on the storage time duration. It was found that 80–95% of freshly collected spores germinated. Spore viability was within the range of 68–95% after 4–6-month storage under lab conditions and did not exceed 20% after 1.5 year of the storage period. High concentrations of exogenous GA3 (10–5 and 10–6 M) and BAP (10–5 M) significantly inhibited spore germination, whereas low concentrations (GA3 10–7–10–8 M) had an insignificant stimulating effect or did not affect germination at all (BAP 10–6, 10–7, 10–8 M). All concentrations of exogenous BAP were demonstrated to inhibit the development of P. aculeatum gametophyte at the protonema stage, which might be due to the removal of apical dominance. The inhibiting effect directly depended on BAP concentrations. The formation of abnormal thalli of the P. aculeatum gametophyte in the response to exogenous GA3 treatments occurred as a result of impairment of cell growth by elongation. A direct interrelationship between GA3 concentrations and level of morphological abnormalities and grade of thalli underdevelopment was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, L.M., Sheyko, O.A., Kosakivska, I.V., Vedenichova, N.P., Nehretsky, V.A., and Vasheka, V.O., Structural and functional characteristics of Pteridophytes (Polypodiophyta), Bull. Charkovsky Natl. Agr. Univ., Ser. Biol., 2015, vol. 1, no. 34, pp. 80–103.

    Google Scholar 

  2. Ross, M., Mapping the world’s pteridophyte diversity, systematics and floras, in Pteridology in Perspective, Camus, J.M. and Johns, R.J., Eds, Kew: Rojal Bot. Gardens, 1996, pp. 29–42.

    Google Scholar 

  3. Haufler, C.H., Pryer, K.M., Schuettpelz, E., Sessa, E.B., Farrar, D.R., Moran, R., Schneller, J.J., Watkins, J.E., Jr., and Windham, M.D., Sex and the single gametophyte: revising the homosporous vascular plant life cycle in light of contemporary research, BioScience, 2016, vol. 66, no. 11, pp. 928–937.

    Article  Google Scholar 

  4. Atallah, N.M. and Banks, J.A., Reproduction and the pheromonal regulation of sex type in fern gametophytes, Front. Plant Sci., 2015, vol. 6, pp. 100–107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anterola, A., Shanle, E., Mansouri, K., Schuette, S., and Renzaglia, K., Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens, Planta, 2009, vol. 229, no. 4, pp. 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  6. Guillon, J.M. and Raquin, C., Environmental sex determination in the genus equisetum: sugars induce male sex expression in cultured gametophytes, Int. J. Plant Sci., 2002, vol. 163, no. 5, pp. 825–830.

    Article  CAS  Google Scholar 

  7. Tanaka, J., Yano, K., Aya, K., Hirano, K., Takehara, S., Koketsu, E., Ordonio, R.L., Park, S.-H., Nakajima, M., Ueguchi-Tanaka, M., and Matsuoka, M., Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway, Science, 2014, vol. 346, no. 6208, pp. 469–473.

    Article  CAS  PubMed  Google Scholar 

  8. Tanurdzic, M. and Banks, J.A., Sex determining mechanisms in land plants, Plant Cell, 2004, vol. 16, suppl., pp. 61–71.

    Article  Google Scholar 

  9. Vasjuk, V.A. and Kosakivska, I.V., Gibberellins in ferns: participation in regulation of physiological processes, Ukr. Bot. J., 2015, vol. 72, no. 1, pp. 65–73.

    Article  Google Scholar 

  10. Gerashchenkov, G.A. and Rozhnova, N.A., The involvement of phytohormones in the plant sex regulation, Russ. J. Plant Physiol., 2013, vol. 60, no. 5, pp. 597–610.

    Article  CAS  Google Scholar 

  11. Gantait, S., Sinniah, U.R., Ali, N., and Sahu, N.C., Gibberellins-a multifaceted hormone in plant growth regulatory network, Curr. Protein Pept. Sci., 2015, vol. 16, no. 5, pp. 406–412.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta, R. and Chakraborty, S., Gibberellic acid in plant, Plant. Signal. Behav., 2013, vol. 8, no. 9, p. e25504.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kosakivska, I.V., Babenko, L.M., Shcherbatiuk, M.M., Vedenicheva, N.P., Voytenko, L.V., and Vasyuk, V.A., Phytohormones during growth and development of Polypodiophyta, Adv. Biol. Earth Sci., 2016, vol. 1, no. 1, pp. 26–44.

    Google Scholar 

  14. Nakajima, M., Shimada, A., Takashi, Y., Kim, Y.C., Park, S.H., Ueguchi-Tanaka, M., Suzuki, H., Katoh, E., Iuchi, S., Kobayashi, M., Maeda, T., Matsuoka, M., and Yamaguchi, I., Identification and characterization of Arabidopsis gibberellin receptors, Plant J., 2006, vol. 46, no. 5, pp. 880–889.

    Article  CAS  PubMed  Google Scholar 

  15. Furber, M., Mander, L.N., Nester, J.E., Takahashi, N., and Yamane, H., Structure of an antheridiogen from the fern Anemia mexicana, Phytochemistry, 1989, vol. 28, no. 1, pp. 63–66.

    Article  CAS  Google Scholar 

  16. Menéndez, V., Revilla, M.A., Bernard, P., Gotor, V., and Fernández, H., Gibberellins and antheridiogen on sex in Blechnum spicant L., Plant Cell Rep., 2006, vol. 25, no. 10, pp. 1104–1110.

    Article  PubMed  Google Scholar 

  17. Hollingsworth, N.S., Andres, E.A., and Greery, G.K., Pheromonal interactions among gametophytes of Osmundastrum cinnamomeum L. and the origins of antheridiogen systems in leptosporangiate ferns, Int. J. Plant Sci., 2012, vol. 173, no. 4, pp. 382–390.

    Article  CAS  Google Scholar 

  18. Kazmierczak, A., Induction of cell division and cell expansion at the beginning of gibberellin A3-induced precocious antheridia formation in Anemia phyllitidis gametophytes, Plant Sci., 2003, vol. 165, no. 5, pp. 933–939.

    Article  CAS  Google Scholar 

  19. Takeno, K.M. and Furuya, M., Inhibitory effect of gibberellins on archegonial differentiation in Lygodium japonicum, Physiol. Plant., 1977, vol. 39, no. 2, pp. 135–138.

    Article  CAS  Google Scholar 

  20. Guo, Q.X., Shen, Y.X., Song, X.H., and Zhao, H.T., The effects of spores germination and planting rate of Athyrium multidentatum, Chin. Agric. Sci. Bull., 2007, vol. 23, no. 2, pp. 343–345.

    Google Scholar 

  21. Li, J., Yuan, Y.B., and Cao, Z.X., View of the cytology and biochemistry of sexual reproduction of algae and pteridophyta, Chin. Bull. Bot., 1995, vol. 12, no. 2, pp. 1–8.

    Google Scholar 

  22. Naf, U., On dark-germination and antheridium formation in Anemia phyllitidis, Physiol. Plant., 1966, vol. 19, no. 4, pp. 1079–1088.

    Article  Google Scholar 

  23. Nester, J.E. and Coolbaugh, R.C., Factors influencing spore germination and early gametophyte development in Anemia mexicana and Anemia phyllitidis, Plant Physiol., 1986, vol. 82, no. 1, pp. 230–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suo, J., Chen, S., Zhao, Q., Shi, L., and Dai, Sh., Fern spore germination in response to environmental factors, Front. Biol., 2015, vol. 10, no. 4, pp. 358–376.

    Article  CAS  Google Scholar 

  25. Weinberg, E.S. and Voeller, B.R., Induction of fern spore germination, Proc. Natl. Acad. Sci. U. S. A., 1969, vol. 64, no. 2, pp. 835–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z. and Dai, S., Effect of environmental factors on fern spore germination, Acta Ecol. Sin., 2010, vol. 30, no. 7, pp. 1882–1893.

    Google Scholar 

  27. Zhang, J.W. and Niu, J.Y., The effects of culture ground substances, GA3 and B, on spores germination and planting rate of Pteridium aquilinum, Acta Pratac. Sin., 1999, vol. 8, no. 1, pp. 62–68.

    Google Scholar 

  28. Vasyuk, V.A., Vedenicheva, N.P., and Musatenko, L.I., Matteucia struthiopteris (L.) Tod. endogenous phytohormones, in Mat-ly Vseukr. nauk. konf. “Botanika ta mikolohiia: problemy i perspektyvy na 2011–2020 roky” (Proc. All-Ukr. Sci. Conf. “Botany and Mycology: Problems and Prospects for 2011–2020”), Kyiv, 2011, pp. 257–258.

    Google Scholar 

  29. Guiragossian, H.A. and Koning, R.E., Induction of spore germination in Schizaea pusilla (Schizaeaceae), Am. J. Bot., 1986, vol. 73, no. 11, pp. 1588–1594.

    Article  Google Scholar 

  30. Ren, B.R., Xia, B., Li, W.L., Wu, J.L., and Zhao, Y.Y., Investigation on spore germination of Sphenomeris chinensis (Lindsaeaceae), Acta Bot. Yun., 2008, vol. 30, no. 6, pp. 713–717.

    CAS  Google Scholar 

  31. Zhai, G.Y., Bian, K., Jia, K.G., and Zhu, L.X., Effect of GA3 and MS medium ratio treatments on spore germination of wild brake, China Veget., 2007, vol. 8, pp. 21–23.

    Google Scholar 

  32. Huang, S., Cerny, R.E., Qi, Y., Bhat, D., Aydt, C.M., Hanson, D.D., Malloy, K.P., and Ness, L.A., Transgenic studies on the involvement of cytokinin and gibberellin in male development, Plant Physiol., 2003, vol. 131, no. 3, pp. 1270–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vedenicheva, N.P. and Kosakivska, I.V., Modern aspects of cytokinins studies: evolution and crosstalk with other phytohormones, Plant Physiol. Genet., 2016, vol. 4, no. 1, pp. 3–15.

    Google Scholar 

  34. Kieber, J.J. and Schaller, G.E., Cytokinins, Arabidopsis Book, 2014, vol. 12, p. e0168.

    Article  PubMed  Google Scholar 

  35. Vankova, R., Cytokinin regulation of plant growth and stress responses, phytohormones: a window to metabolism, in Signaling and Biotechnological Applications, Tran, L.-S. and Pal, S., Eds., New York: Springer, 2014, pp. 55–79.

    Google Scholar 

  36. Vedenicheva, N.P., Cytokinins as regulators of plant organs growth under different conditions, Bull. Kharkiv Nat. Agrar. Univ., Ser. Biol., 2016, vol. 1, no. 37, pp. 6–26.

    Google Scholar 

  37. Chia, S.G.E. and Raghavan, V., Abscisic acid effect on spore germination and protonemal growth in the fern, Mohria caffrorum, New Phytol., 1982, vol. 92, no. 1, pp. 31–37.

    Article  CAS  Google Scholar 

  38. Chen, S.Y. and Read, P.E., Micropropagation of leatherleaf fern (Rumohra adiantiformis), Proc. Fla. State Hort. Soc., 1983, vol. 96, pp. 266–269.

    Google Scholar 

  39. Paull, R.E. and Chantrachit, T., Benzyladenine and the vase life of tropical ornamentals, Postharvest Biol. Technol., 2001, vol. 21, no. 3, pp. 303–310.

    Article  CAS  Google Scholar 

  40. Spiro, M.D., Torabi, B., and Cornell, C.N., Cytokinins induce photomorphogenic development in dark-grown gametophytes of Ceratopteris richardii, Plant Cell Physiol., 2004, vol. 45, no. 9, pp. 1252–1260.

    Article  CAS  PubMed  Google Scholar 

  41. Menéndez, V., Abul, Y., Bohanec, B., Lafont, E., and Fernández, H., The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L., Acta Physiol. Plant., 2011, vol. 33, no. 6, pp. 2493–2500.

    Article  Google Scholar 

  42. Greer, G.K., Dietrich, M.A., DeVol, J.A., and Rebert, A., The effects of exogenous cytokinin on the morphology and gender expression of Osmunda regalis gametophytes, Am. Fern J., 2012, vol. 102, no. 1, pp. 32–46.

    Article  Google Scholar 

  43. Raghavan, V., Developmental Biology of Fern Gametophytes, Cambridge: Univ. Press, 1989.

    Book  Google Scholar 

  44. Vasheka, O.V. and Bezsmertna, I.O., Atlas of the Ferns Flora of Ukraine, Kyiv: Palyvoda, 2012.

    Google Scholar 

  45. Kotuhov, Yu.A., Method of phenological observations of ferns of the family Polypodiaceae, Byull. Gl. Bot. Sada, 1974, vol. 94, pp. 10–18.

    Google Scholar 

  46. Vasheka, O.V., Some biological characteristics of Dryopteris Adans introduced in open ground Fomin Botanical Garden, Bull. Nikit. Bot. Sad, 2004, vol. 89, pp. 12–15.

    Google Scholar 

  47. Grichuk, V.P. and Monoszon, M.H., The Determinant of Single-Beam Spores of the Ferns from the Family Polypodiaceae R. Br. Growing on the Territory of the USSR, Moscow: Nauka, 1971.

    Google Scholar 

  48. Arnautova, E.M., Gametophytes of Equisporous Ferns, St. Petersburg: Univ. Press, 2008.

    Google Scholar 

  49. Schneller, J.J., Untersuchungen an einheimischen Farnen, insbesondere der Dryopteris filix-mas-gruppe. 3. Teil. Okologiche Untersuchungen, Ber. Schweiz. Bot. Ges., 1975, vol. 85, no. 2, pp. 110–159.

    Google Scholar 

  50. Quintanilla, L.G., Amigo, J., Pangua, E., and Pajaron, S., Effect of storage method on spore viability in five globally threatened fern species, Ann. Bot., 2002, vol. 90, no. 4, pp. 461–467.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nayar, B.K. and Kaur, S., Gametophytes of homosporous ferns, Bot. Rev., 1971, vol. 37, pp. 295–396.

    Article  Google Scholar 

  52. Dyer, A.F., Fern gametophytes in culture—a simple system for studying plant development and reproduction, J. Biol. Educ., 1983, vol. 17, no. 1, pp. 23–39.

    Article  Google Scholar 

  53. Pittermann, J., Brodersen, C., and Watkins, J., The physiological resilience of fern sporophytes and gametophytes: advances in water relations offer new insights into an old lineage, Front. Plant Sci., 2013, vol. 4, art. 285, pp. 1–10.

    Article  Google Scholar 

  54. Menéndez, V., Villacorta, N.F., Revilla, M.A., Gotor, V., Bernard, P., and Fernández, H., Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins, Plant Cell Rep., 2006, vol. 25, no. 2, pp. 85–91.

    Article  PubMed  Google Scholar 

  55. Kazmierczak, A., Studies on morphology and metabolism of prothalli during GA3-induced formation of antheridia in Anemia phyllitidis, Acta Physiol. Plant., 1998, vol. 20, no. 3, pp. 277–283.

    Article  CAS  Google Scholar 

  56. Menéndez, V., Revilla, M.A., Fal, M.A., and Fernández, H., The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L., Plant Cell Tiss. Organ Cult., 2009, vol. 96, no. 3, pp. 245–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Babenko.

Additional information

Original Ukrainian Text © L.M. Babenko, K.O. Romanenko, M.M. Shcherbatiuk, O.V. Vasheka, P.O. Romanenko, V.A. Negretsky, I.V. Kosakivska, 2018, published in Tsitologiya i Genetika, 2018, Vol. 52, No. 2, pp. 39–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, L.M., Romanenko, K.O., Shcherbatiuk, M.M. et al. Effects of Exogenous Phytohormones on Spore Germination and Morphogenesis of Polystichum aculeatum (L.) Roth Gametophyte in vitro Culture. Cytol. Genet. 52, 117–126 (2018). https://doi.org/10.3103/S0095452718020032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718020032

Keywords

Navigation