A Model for the Generation of Waves in the Ocean by Seismic Bottom Movements in Sigma-Coordinates

Abstract

This paper describes a model for the generation of waves in the ocean by seismic bottom movements. A specific feature of this model is the use of curvilinear non-orthogonal sigma-coordinates. The results of numerical experiments aimed at studying the mechanisms of the generation of gravity waves by surface seismic waves propagating over the bottom are presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. 1

    V. V. Titov, F. I. Gonzalez, H. O. Mofjeld, and A. J. Venturato, NOAA, NOAA Technical Memorandum OAR PMEL-124 (2003).

  2. 2

    F. Imamura, A. C. Yalciner, and G. Ozyurt, Tsunami Modelling Manual (TUNAMI Model) (2006).

    Google Scholar 

  3. 3

    A. I. Zaytsev, A. G. Chernov, A. C. Yalciner, et al., MANUAL Tsunami Simulation/Visualization Code NAMI DANCE, Vers. 4.9 (2010).

  4. 4

    O. V. Bulatov and T. G. Elizarova, Comput. Math. Math. Phys. 56, 661 (2016).

    MathSciNet  Article  Google Scholar 

  5. 5

    M. A. Nosov, Izv.—Atmos. Ocean. Phys. 50, 474 (2014).

    Article  Google Scholar 

  6. 6

    P. A. Madsen, R. Murray, and O. R. Sørensen, Coast. Eng. 15, 371 (1991).

    Article  Google Scholar 

  7. 7

    F. Løvholt, G. Pedersen, and S. Glimsdal, Open Oceanogr. J. 4, 71 (2010).

  8. 8

    F. Shi, J. T. Kirby, J. C. Harris, et al., Ocean Model. 43–44, 36 (2012).

    ADS  Article  Google Scholar 

  9. 9

    J. Kim, G. K. Pedersen, F. Løvholt, and R. J. LeVeque, Coast. Eng. 122, 75 (2017).

  10. 10

    B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Netherlands, 2016).

    Google Scholar 

  11. 11

    K. Kajiura, Bull. Earthquake Res. Inst. 41, 535 (1963).

    Google Scholar 

  12. 12

    M. A. Nosov and S. V. Kolesov, Pure Appl. Geophys. 168, 1223 (2011).

    ADS  Article  Google Scholar 

  13. 13

    I. V. Fain and E. A. Kulikov, Vychisl. Tekhnol. 16, 111 (2011).

    Google Scholar 

  14. 14

    M. A. Nosov and K. A. Sementsov, Izv.—Atmos. Ocean. Phys. 50, 539 (2014). https://doi.org/10.1134/S0001433814050089

    Article  Google Scholar 

  15. 15

    T. Ohmachi, H. Tsukiyama, and H. Matsumoto, Bull. Seismol. Soc. Am. 91, 1898 (2001).

    Article  Google Scholar 

  16. 16

    B. H. Choi, E. Pelinovsky, D. C. Kim, et al., Nonlin. Processes Geophys. 15, 489 (2008).

    ADS  Article  Google Scholar 

  17. 17

    T. Maeda and T. Furumura, Pure Appl. Geophys. 170, 109 (2013).

    ADS  Article  Google Scholar 

  18. 18

    A. Kozelkov, A. Kurkin, E. Pelinovskii, and V. Kurulin, Fluid Dyn. 50, 306 (2015).

    MathSciNet  Article  Google Scholar 

  19. 19

    M. A. Nosov and S. V. Kolesov, Nat. Hazards Earth Syst. Sci. 7, 243 (2007).

    ADS  Article  Google Scholar 

  20. 20

    A. Bolshakova, S. Inoue, S. Kolesov, et al., Russ. J. Earth. Sci. 12, ES2005 (2011). https://doi.org/10.2205/2011ES000509

  21. 21

    S. V. Kolesov and M. A. Nosov, Uch. Zap. Fiz. F-ta Mosk. Univ., №3, 163904 (2016). http://uzmu.phys.msu.ru/abstract/2016/3/163904

  22. 22

    M. A. Nosov and S. V. Kolesov, Math. Models Comput. Simul. 11, 679 (2019). https://doi.org/10.1134/S2070048219050156

    MathSciNet  Article  Google Scholar 

  23. 23

    N. A. Phillips, J. Meteorol. 14, 184 (1957).

    Article  Google Scholar 

  24. 24

    A. F. Blumberg and G. L. Mellor, Coast. Estuarine Ser. 4, 1 (1987).

    Article  Google Scholar 

  25. 25

    Y. Song and D. Haidvogel, J. Comput. Phys. 115, 228 (1994).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    M. Kocyigit, R. Falconer, and B. Lin, Int. J. Numer. Methods Fluids 40, 1145 (2002).

    ADS  Article  Google Scholar 

  27. 27

    A. F. Shchepetkin and J. C. McWilliams, Ocean Model. 9, 347 (2005).

    ADS  Article  Google Scholar 

  28. 28

    A. Decoene and J.-F. Gerbeau, 2008. \(<\)hal-00275463\(>\).

  29. 29

    A. V. Gusev, ‘‘A numerical model of the hydrodynamics of the ocean in curved coordinates to reproduce the circulation of the world ocean and its individual water areas,’’ Dissertation (Moscow, 2009).

  30. 30

    N. A. Dianskii, Modeling of Ocean Circulation and Study of its Response to Short-Period and Long-Period Atmospheric Effects (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  31. 31

    R. Nagao, S. Inoue, and T. Ohmachi, J. Jpn. Soc. Civil Eng., Ser. B2 66, 301 (2010).

    Google Scholar 

  32. 32

    S. Murotani, M. Iwai, K. Satake, G. Shevchenko, and A. Loskutov, Pure Appl. Geophys. 172, 683 (2015).

    ADS  Article  Google Scholar 

  33. 33

    M. A. Nosov, K. A. Sementsov, S. V. Kolesov, H. Matsumoto, and B. W. Levin, Dokl. Earth Sci. 461, 408 (2015). https://doi.org/10.1134/S1028334X15040121

    ADS  Article  Google Scholar 

  34. 34

    K. A. Sementsov, M. A. Nosov, S. V. Kolesov, and Y. Wu, Mosc. Univ. Phys. Bull. 72, 614 (2017). https://doi.org/10.3103/S0027134917060145

    ADS  Article  Google Scholar 

  35. 35

    K. A. Sementsov, S. V. Kolesov, M. A. Nosov, et al., Uch. Zap. Fiz. F-ta Mosk. Univ., №4, 1740504 (2017). http://uzmu.phys.msu.ru/abstract/2017/4/1740504

  36. 36

    K. A. Sementsov, M. A. Nosov, S. V. Kolesov, and A. V. Bol’shakova, Uch. Zap. Fiz. F-ta Mosk. Univ., №5, 1850301 (2018). http://uzmu.phys.msu.ru/abstract/2018/5/1850301

  37. 37

    L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  38. 38

    V. F. Butuzov, N. Ch. Krutitskaya, G. N. Medvedev, and A. A. Shishkin, Mathematical Analysis in Questions and Tasks, 5th ed. (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  39. 39

    Y.-Y. Li, B. Wang, and D.-H. Wang, Atmos. Ocean. Sci. Lett. 4, 157 (2011).

    Article  Google Scholar 

  40. 40

    M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, Pure Appl. Geophys. 170, 1647 (2013).

    ADS  Article  Google Scholar 

  41. 41

    M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, Pure Appl. Geophys. 171, 3515 (2014).

    ADS  Article  Google Scholar 

  42. 42

    K. Aki and P. Richards, Quantitative Seismology (University Science Books, 2009), Vol. 1.

    Google Scholar 

  43. 43

    Y. Tanioka and K. Satake, Geophys. Res. Lett. 23, 861 (1996).

    ADS  Article  Google Scholar 

  44. 44

    M. A. Nosov, Mosc. Univ. Phys. Bull. 47 (1), 110 (1992).

    Google Scholar 

  45. 45

    H. Matsumoto and Y. Kaneda, in Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, November 18–21, 2013 (2013), p. 493.

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant no. 19-05-00351).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to K. A. Sementsov or A. V. Bolshakova.

Additional information

Translated by E. Glushachenkova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sementsov, K.A., Bolshakova, A.V. A Model for the Generation of Waves in the Ocean by Seismic Bottom Movements in Sigma-Coordinates. Moscow Univ. Phys. 75, 87–94 (2020). https://doi.org/10.3103/S0027134920010129

Download citation

Keywords:

  • tsunami
  • ocean gravity waves
  • surface seismic waves
  • numerical simulation
  • underwater slopes
  • curvilinear sigma-coordinates