Electron Radiation in Lorentz-Violating Vacuum

Abstract

The power and probability of electron radiation in a constant background tensor field violating Lorentz invariance are calculated. The angular distribution and polarization of radiation are examined. Current experimental constraints on the strength of the background field are used to demonstrate that the radiation effect may manifest itself under astrophysical conditions at ultrahigh electron energies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    The system of units with \(\hbar=c=1\), \(\alpha=e^{2}/4\pi\simeq 1/137\) and the pseudo-Euclidean metric with signature \($$(+\,-\,-\,-)\) are used; \(\hat{a}=\gamma^{\mu}a_{\mu}\) is the convolution of Dirac matrices \(\gamma^{\mu}\) with four-vector \(a^{\mu}=(a^{0},{\mathbf{a}})\); \(\gamma^{5}=i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}\), \({\sigma^{\mu\nu}}=i[{\gamma^{\mu}},{\gamma^{\nu}}]/2\).

  2. 2.

    In the Heaviside system of units used here, \(\sqrt{\alpha}=e/\sqrt{4\pi}=e_{\textrm{G}}\), which is the charge in the Gaussian system.

REFERENCES

  1. 1

    M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

  2. 2

    V. M. Emel’yanov, Standard Model and its Extensions (Fizmatlit, Moscow, 2007).

    Google Scholar 

  3. 3

    Y. Nagashima, Beyond the Standard Model of Elementary Particle Physics (Wiley-VCH, Weinheim, 2014).

    Google Scholar 

  4. 4

    P. Langacker, The Standard Model and Beyond, 2nd ed. (CRC, Boca Raton, 2017).

    Google Scholar 

  5. 5

    S. Weinberg, The Quantum Theory of Fields. Vol. I. Foundations (Cambridge University Press, Cambridge, 1995).

  6. 6

    D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997).

    ADS  Article  Google Scholar 

  7. 7

    D. Colladay and V. A. Kostelecký, Phys. Rev. D 58, 116002 (1998).

  8. 8

    V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11 (2011); arXiv:0801.0287v12 [hep-ph] (2019).

  9. 9

    S. Carroll, G. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990).

    ADS  Article  Google Scholar 

  10. 10

    V. Ch. Zhukovsky, A. E. Lobanov, and E. M. Murchikova, Phys. Rev. D 73, 065016 (2006).

  11. 11

    V. Ch. Zhukovsky, A. E. Lobanov, and E. M. Murchikova, Phys. At. Nucl. 70, 1248 (2007).

    Article  Google Scholar 

  12. 12

    I. E. Frolov and V. Ch. Zhukovsky, J. Phys. A 40, 10625 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    O. G. Kharlanov and V. Ch. Zhukovsky, J. Math. Phys. 48, 092302 (2007).

  14. 14

    A. F. Bubnov, N. V. Gubina, and V. Ch. Zhukovsky, Mosc. Univ. Phys. Bull. 71, 168 (2016).

    ADS  Article  Google Scholar 

  15. 15

    W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    ADS  Article  Google Scholar 

  16. 16

    I. M. Ternov, V. Ch. Zhukovskii, and A. V. Borisov, Quantum Processes in a Strong External Field (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  17. 17

    A. F. Bubnov, N. V. Gubina, and V. Ch. Zhukovsky, Phys. Rev. D 96, 016011 (2017).

  18. 18

    A. V. Borisov and T. G. Kiril’tseva, Mosc. Univ. Phys. Bull. 72, 182 (2017).

    ADS  Article  Google Scholar 

  19. 19

    A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovskii, and A. V. Borisov, Quantum Electrodynamics (Mosk. Gos. Univ., Moscow, 1983 [in Russian]; Mir Publishers, Moscow, 1988).

  20. 20

    I. M. Ternov, V. G. Bagrov, and A. M. Khapaev, Sov. Phys. JETP 21, 613 (1965).

    ADS  Google Scholar 

  21. 21

    A. A. Sokolov and I. M. Ternov, Relativistic Electron (Nauka, Moscow, 1982) [in Russian]; Radiation from Relativistic Electrons (Am. Inst. Phys., Boston, 1986).

  22. 22

    V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 2002) [in Russian]; Pergamon, Oxford, 1982).

  23. 23

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: Theory of Field, 8th ed. (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  24. 24a

    J. Schwinger, Phys. Rev. 73, 416 (1948);

    ADS  Article  Google Scholar 

  25. 24b

    Phys. Rev. 76, 790 (1949).

  26. 25

    A. E. Lobanov and O. S. Pavlova, Vestn. Mosk. Univ., Fiz. Astron., №2, 18 (2000).

    Google Scholar 

  27. 26

    A. E. Lobanov and O. S. Pavlova, Phys. Lett. A 275, 1 (2000).

    ADS  Article  Google Scholar 

  28. 27

    V. G. Bagrov et al., Theory of the Radiation of Relativistic Particles, Ed. by V. A. Bordovitsyn (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  29. 28

    A. E. Lobanov, J. Phys. A 39, 7517 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  30. 29

    M. Amenomori et al. (Tibet AS\(\gamma\) Collab.), Phys. Rev. Lett. 123, 051101 (2019).

  31. 30

    D. J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993).

    ADS  Article  Google Scholar 

  32. 31

    L. A. Anchordoqui, Phys. Rep. 801, 1 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  33. 32

    Wm. R. Johnston, http://www.johnstonsarchive.net/ astro/nearstar.html.

Download references

ACKNOWLEDGMENTS

The authors wish to thank A.E. Lobanov for fruitful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. V. Borisov or T. G. Kiril’tseva.

Additional information

Translated by D. Safin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Kiril’tseva, T.G. Electron Radiation in Lorentz-Violating Vacuum. Moscow Univ. Phys. 75, 10–17 (2020). https://doi.org/10.3103/S0027134920010051

Download citation

Keywords:

  • Standard Model Extension
  • Lorentz violation
  • background field
  • quantum electrodynamics
  • radiation power and polarization
  • electron magnetic moment