Skip to main content
Log in

Time Variations in the FTIR Spectra of Liquids Measured in the ATR Configuration

  • OPTICS AND SPECTROSCOPY. LASER PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Attenuated total reflection (ATR) is often employed in the measurements of FTIR spectra. Such a configuration is convenient for experiments with liquid samples, since pressing them to the surface of the ATR crystal is not necessary. Spectral changes that occur in the course of measurements with liquids are revealed. It is shown that significant variations in the concentrations of components may occur in the ATR-FTIR measurements of solutions. Redistribution of components of a solution in the vicinity of the ATR crystal may lead to inhomogeneity of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. DNPA and ethyl benzoate may serve as substrates for α-chymotrypsin, whose reactions are of interest in enzymology.

REFERENCES

  1. I. A. Balakhnina, N. N. Brandt, A. A. Mankova, A. Yu. Chikishev, and I. G. Shpachenko, J. Appl. Spectrosc. 84, 650 (2017). doi 10.1007/s10812-017-0524-1

    Article  ADS  Google Scholar 

  2. M. Milosevic, D. Sting, and A. Rein, Spectroscopy 10 (4), 44 (1995).

    Google Scholar 

  3. D. B. Parry and J. M. Harris, Appl. Spectrosc. 42, 997 (1988).

    Article  ADS  Google Scholar 

  4. R. T. Yang, M. J. D. Low, G. L. Haller, and J. Fenn, J.  Colloid Interface Sci. 44, 249 (1973). doi 10.1016/0021-9797(73)90217-8

    Article  ADS  Google Scholar 

  5. M. L. Free and J. D. Miller, Langmuir 13, 4377 (1997). doi 10.1021/la960329r

    Article  Google Scholar 

  6. G. P. Bogatyreva, M. A. Marinich, and V. L. Gvyaz-dovskaya, Diamond Relat. Mater. 9, 2002 (2000). doi 10.1016/S0925-9635(00)00351-4

    Article  ADS  Google Scholar 

  7. L. M. Martynova and E. G. Gatilova, Adsorption of Amines from Synthetic-Diamond Solutions (Naukova Dumka, Kiev, 1975).

    Google Scholar 

  8. H. L. Shergold and C. J. Hartley, Int. J. Miner. Process. 3, 219 (1982). doi 10.1016/0301-7516(82)90029-1

    Article  Google Scholar 

  9. O. Ponomarev, N. Lvova, and A. Ryazanova, Surf. Innovations 6, 71 (2018). doi 10.1680/jsuin.17.00050

    Google Scholar 

  10. M. De La Pierre, M. Bruno, C. Manfredotti, F. Nestola, et al., Mol. Phys. 112, 1030 (2014). doi 10.1080/00268976.2013.829250

    Article  ADS  Google Scholar 

  11. N. A. Lvova and O. Yu. Ananina, Russ. J. Phys. Chem. A 87, 1515 (2013). doi 10.1134/S0036024413090148

    Article  Google Scholar 

  12. P. A. Thompson and S. M. Trojan, Nature 389, 360 (1997). doi 10.1038/38686

    Article  ADS  Google Scholar 

  13. T. Staudacher, N. Raatz, S. Pezzagna, J. Meijer, et al., Nat. Commun. 6, 8527 (2015). doi 10.1038/ncomms9527

    Article  Google Scholar 

  14. J. M. Zheng, W. C. Chin, E. Khijniak, E. Khijniak, Jr., et al., Adv. Colloid Interface Sci. 127, 19 (2006). doi 10.1016/j.cis.2006.07.002

    Article  Google Scholar 

  15. B. H. Chai, J. M. Zheng, Q. Zhao, and G. H. Pollack, J. Phys. Chem. A 112, 2242 (2008). doi 10.1021/jp710105n

    Article  Google Scholar 

  16. B. Chai and G. H. Pollack, J. Phys. Chem. B 114, 5371 (2010). doi 10.1021/jp100200y

    Article  Google Scholar 

  17. S. Z. Vatsadze, A. V. Medved’ko, S. A. Kurseev, O. I. Pokrovskiy, et al., Organometallics 36, 3068 (2017). doi 10.1021/acs.organomet.7b00410

    Article  Google Scholar 

  18. http://cssp.chemspider.com/705.

  19. N. N. Brandt, O. O. Brovko, A. Yu. Chikishev, and O. D. Paraschuk, Appl. Spectrosc. 60, 288 (2006). doi 10.1366/000370206776342553

    Article  ADS  Google Scholar 

  20. C. A. Lieber and A. Mahadevan-Jansen, Appl. Spectrosc. 57, 1363 (2003). doi 10.1366/000370203322554518

    Article  ADS  Google Scholar 

  21. N. N. Brandt, A. Yu. Chikishev, A. I. Chulichkov, P. A. Ignatiev, et al., Laser Phys. 14, 1386 (2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Program of Development of Moscow State University and the Russian Foundation for Basic Research (project no. 17-02-01411-a).

We are grateful to A.V. Medved’ko and I.K. Sakodynskaya for preparation of samples and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. G. Shpachenko, N. N. Brandt or A. Yu. Chikishev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpachenko, I.G., Brandt, N.N. & Chikishev, A.Y. Time Variations in the FTIR Spectra of Liquids Measured in the ATR Configuration. Moscow Univ. Phys. 73, 644–650 (2018). https://doi.org/10.3103/S002713491806022X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491806022X

Keywords:

Navigation