Skip to main content
Log in

Calculation of the Thermoelectric Characteristics of Lead Telluride at a High Level of Acceptor Doping

  • CONDENSED MATTER PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The thermoelectric properties of p-РbТе were studied theoretically at the level of acceptor doping within 5 × 1019 to 4 × 1020 cm–3 and in the 300–900 K temperature range. The three-band model of the electron energy spectrum of PbTe that was used in the calculations includes not only the bands of light electrons and holes in L-points of Brillouin zone but also the band of heavy holes in its Σ-points. The heavy Σ-band plays an important role in increasing the thermoelectric figure of merit of this material at high levels of acceptor doping. The calculated values of thermoelectric characteristics are very sensitive to the doping level. The calculations revealed that thermoelectric figure of merit increases with the doping level up to ZT ≈ 1.3 at 900 К. This maximum is located near the temperature at which the peaks of the bands of light and heavy holes coincide in energy and sharp singularity of density of states arises in the valence band; the Fermi energy is not far from the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  2. H. Ohita, Mater. Today 10, 44 (2007).

    Article  Google Scholar 

  3. A. V. Dmitriev and I. P. Zvyagin, Phys.-Usp. 53, 789 (2010).

    Article  Google Scholar 

  4. A. Ishida, T. Yamada, D. Cao, et al., J. Appl. Phys. 106, 023718 (2009).

    Article  ADS  Google Scholar 

  5. J. Andrulakis, I. Todorov, D.-Y. Chung, et al., Phys. Rev. B 82, 115209 (2010).

    Article  ADS  Google Scholar 

  6. Y. Pei, A. LaLonde, S. Iwanga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).

    Article  Google Scholar 

  7. H. Preier, Appl. Phys. 20, 189 (1989).

    Article  ADS  Google Scholar 

  8. Z. Gibbs, H. Kim, H. Wang, et al., Appl. Phys. Lett. 103, 262109 (2013).

    Article  ADS  Google Scholar 

  9. N. I. Babenko and A. V. Dmitriev, J. Appl. Phys. 121, 025704 (2017).

    Article  ADS  Google Scholar 

  10. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon, Oxford, 1936).

    Google Scholar 

  11. N. I. Babenko and A. V. Dmitriev, Moscow Univ. Phys. Bull. 72, 582 (2017). https://doi.org/ 10.3103/S0027134917060029

    Article  ADS  Google Scholar 

  12. N. I. Babenko and A. V. Dmitriev, Moscow Univ. Phys. Bull. 72, 587 (2017). https://doi.org/ 10.3103/S0027134917060030

    Article  ADS  Google Scholar 

  13. A. V. Dmitriev and E. S. Tkacheva, J. Electron. Mater. 43, 1280 (2014).

    Article  ADS  Google Scholar 

  14. A. V. Dmitriev and E. S. Tkacheva, Moscow Univ. Phys. Bull. 69, 243 (2014). https://doi.org/ 10.3103/S0027134914030072

    Article  ADS  Google Scholar 

  15. S. D. Beneslavskii and A. V. Dmitriev, Solid State Commun. 32, 1175 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitriev.

Additional information

Translated by M. Kromin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.V. Calculation of the Thermoelectric Characteristics of Lead Telluride at a High Level of Acceptor Doping. Moscow Univ. Phys. 73, 674–677 (2018). https://doi.org/10.3103/S0027134918060103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918060103

Keywords:

Navigation