Skip to main content
Log in

Spallation Yield of Neutrons Produced in Tungsten and Bismuth Target Bombarded with 0.1 to 3 GeV Proton Beam

  • THE PHYSICS OF THE ATOMIC NUCLEUS AND ELEMENTARY PARTICLES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this paper, we investigated a system, is composed of a natural tungsten and bismuth cylindrical targets. The target has been optimized to produce the maximum of neutrons yield with a diameter of 20 cm and varying height from 10 to 80 cm. The target is bombarded with a high-intensity accelerator by a 0.1 to 3 GeV proton beam. The protons are assumed uniformly distributed across the beam of diameter 2 cm. In this work, we have used Monte Carlo method by using MCNP-6 code to simulate spallation neutron yield, neutron spectrum and distribution of the spallation neutrons coming out of the target in the target region. According to the results approving using several simulations for two targets tungsten and bismuth, the difference of spallation neutron yield increases by 8.92% using a bismuth target and for some beam energy 3 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Didi, A. Dadouch, and H. El Bekkouri, Int. J. Pharm. Pharm. Sci. 8, 327 (2016).

    Article  Google Scholar 

  2. A. Golabian, M. A. Hosseini, M. Ahmadi, B. Soleimani, and M. Rezvanifard, Appl. Radiat. Isot. 131, 62 (2018).

    Article  Google Scholar 

  3. R. C. Martin, J. B. Knauer, and P. A. Balo, Appl. Radiat. Isot. 53, 785 (2000).

    Article  Google Scholar 

  4. S. Reucroft, R. Rusack, D. Ruuska, and J. Swain, Nucl. Instrum. Methods Phys. Res., Sect. A 387, 214 (1997).

    Google Scholar 

  5. A. Didi, A. Dadouch, O. Jai, J. Tajmouati, and H. El Bekkouri, Nucl. Eng. Technol. 49, 787 (2017).

    Article  Google Scholar 

  6. A. Didi, A. Dadouch, M. Bencheikh, and O. Jai, Moscow Univ. Phys. Bull. 72, 460 (2017).

    Article  ADS  Google Scholar 

  7. A. Didi, A. Dadouch, and O. Jai, Moscow Univ. Phys. Bull. 72, 465 (2017).

    Article  ADS  Google Scholar 

  8. R. B. M. Sogbadji, R. G. Abrefah, B. J. B. Nyarko, E. H. K. Akaho, H. C. Odoi, and S. Attakorah-Birinkorang, Appl. Radiat. Isot. 90, 192 (2014).

    Article  Google Scholar 

  9. L. Yang and W. Zhan, Sci. China: Technol. Sci. 58, 1705 (2015). https://doi.org/10.1007/s11431-015-5894-0

    Article  Google Scholar 

  10. W. Chou, arXiv:physics/0301025 [physics.acc-ph].

  11. J.-Y. Li, Y.-L. Zhang, X.-C. Zhang, L.-W. Chen, and L. Yang, Nucl. Eng. Des. 324, 202 (2017).

    Article  Google Scholar 

  12. M. A. Mosby, J. W. Engle, K. R. Jackman, F. M. Nortier, and E. R. Birnbaum, Nucl. Instrum. Methods Phys. Res., Sect. B 381, 29 (2016).

    Google Scholar 

  13. Y. Liu, PhD Thesis (North Carolina State Univ., Raleigh, 2006).

  14. C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen, J. L. Anderson, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 320, 336 (1992).

    Google Scholar 

  15. R. D. Cromarty, G. T. van Rooyen, and J. P. R. de Villiers, J. Nucl. Mater. 445, 30 (2014).

    Article  ADS  Google Scholar 

  16. A. Lafuente and M. Piera, Ann. Nucl. Energy 38, 910 (2011).

    Article  Google Scholar 

  17. P. Schuurmans et al., in Proc. Int. Workshop on P&T and ADS Development, Mol, 2003, p. 657.

  18. L. Hu, Y. Zhang, G. H. Su, W. Tian, and S. Qiu, Nucl. Eng. Des. 322, 474 (2017).

    Article  Google Scholar 

  19. K. Samec, R. Ž. Milenković, L. Blumenfeld, S. Dementjevs, C. Kharoua, and Y. Kadi, Nucl. Instrum. Methods Phys. Res., Sect. A 638, 1 (2011).

    Google Scholar 

  20. L. Buligins, K. Thomsen, O. Lielausis, E. Platacis, and A. Poznaks, Nucl. Instrum. Methods Phys. Res., Sect. A 761, 58 (2014).

    Google Scholar 

  21. J.-Y. Li, Y.-L. Zhang, X.-C. Zhang, L.-W. Chen, and L. Yang, Nucl. Eng. Des. 324, 202 (2017).

    Article  Google Scholar 

  22. T. A. Frolova, Nucl. Energy Technol. 3, 60 (2017).

    Article  Google Scholar 

  23. S. R. Hashemi-Nezhad, W. Westmeier, M. Zamani-Valasiadou, et al., Ann. Nucl. Energy 38, 1144 (2011).

    Article  Google Scholar 

  24. E. Haug, Astron. Astrophys. 406, 31 (2003).

    Article  ADS  Google Scholar 

  25. Y. Zhang, J. Li, X. Zhang, H. Cai, and L. Yang, Nucl. Instrum. Methods Phys. Res., Sect. B 410, 88 (2017).

    Google Scholar 

  26. S. Zhou, H. Wu, and Y. Zheng, Ann. Nucl. Energy 111, 271 (2018).

    Article  Google Scholar 

  27. H. W. Bertini, Phys. Rev. 131, 1801 (1963).

    Article  ADS  Google Scholar 

  28. H. W. Bertini, Phys. Rev. 188, 1711 (1969).

    Article  ADS  Google Scholar 

  29. M. P. Guthrie et al., Nucl. Instrum. Methods 66, 29 (1968). https://doi.org/10.1016/0029-554X(68)90054-2

    Article  ADS  Google Scholar 

  30. Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).

    Article  ADS  Google Scholar 

  31. Y. Yariv and Z. Fraenkel, Phys. Rev. C 24, 488 (1981).

    Article  ADS  Google Scholar 

  32. A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 66, 044615 (2002).

    Article  ADS  Google Scholar 

  33. J. Cugnon, Nucl. Phys. A 462, 751 (1987).

    Article  ADS  Google Scholar 

  34. J. Cugnon, C. Volant, and S. Vuillier, Nucl. Phys. A 620, 475 (1997).

    Article  ADS  Google Scholar 

  35. B. Şarer, S. Şahin, Y. Çelik, and M. Günay, Ann. Nucl. Energy 62, 382 (2013).

    Article  Google Scholar 

  36. J. T. Goorley et al., Report No. LA-CP-14-00745 (Los Alamos National Laboratory, Los Alamos, 2014).

  37. Handbook on Photonuclear Data for Applications. Cross-Sections and Spectra (International Atomic Energy Agency, Vienna, 2000).

  38. A. Fassò, A. Ferrari, and P. R. Sala, in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Ed. by A. Kling, F. J. C. Baräo, M. Nakagawa, L. Távora, and P. Vaz (Springer, 2001), p. 159.

    Google Scholar 

  39. Y. Kadi, in Proc. 5th Workshop on Simulating Accelerator Radiation Environments, Paris, 2000, p. 117

  40. M. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006).

    Article  ADS  Google Scholar 

  41. W. P. Swanson, Radiological Safety Aspects of the Operation of Electron Linear Accelerators (International Atomic Energy Agency, Vienna, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessamad Didi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didi, A., Bencheikh, M., Dadouch, A. et al. Spallation Yield of Neutrons Produced in Tungsten and Bismuth Target Bombarded with 0.1 to 3 GeV Proton Beam. Moscow Univ. Phys. 73, 612–617 (2018). https://doi.org/10.3103/S0027134918060085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918060085

Keywords:

Navigation