Skip to main content
Log in

Evolution of the Neutron Single-Particle Structure of Neutron-Rich Isotones with N = 28 in the Dispersive Optical Model

  • THE PHYSICS OF THE ATOMIC NUCLEUS AND ELEMENTARY PARTICLES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The evolution of the single-particle characteristics of isotones with N = 28 upon approaching the neutron drip line has been calculated using a dispersive optical model. According to the calculation, the particle–hole gap N = 28 sharply decreases with an excess of neutrons so that the 1f7/2, 2p3/2 and 2p1/2 states are almost degenerate at the neutron drip line with an occupation probability close to 0.5. Due to the Jahn–Teller effect, the degeneracy of these states is one of the causes of deformation of neutron-rich isotones with N = 28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. R. Werner, J. A. Sheikh, M. Misu, et al., Nucl. Phys. A 597, 327 (1996).

    Article  ADS  Google Scholar 

  2. P.-G. Reinhardt, D. J. Dean, W. Nazarewicz, et al., Phys. Rev. C 60, 014316 (1990).

    Article  ADS  Google Scholar 

  3. G. A. Lalazissis, D. Vretenar, P. Ring, et al., Phys. Rev. C 60, 014310 (1990).

    Article  ADS  Google Scholar 

  4. S. Peru, M. Giroda, and J. F. Berger, Eur. Phys. J. A 49, 35 (2000).

    Article  ADS  Google Scholar 

  5. R. Rodriguez-Guzman, J. L. Egido, and L. M. Robledo, Phys. Rev. C 65, 024304 (2002).

    Article  ADS  Google Scholar 

  6. S. Ebata and M. Kimura, Phys. Rev. C 91, 014309 (2015).

    Article  ADS  Google Scholar 

  7. H. A. Jahn and E. Teller, Proc. R. Soc. London, Ser. A 161, 220 (1937).

    Article  ADS  Google Scholar 

  8. P.-G. Reinhard and E. W. Otten, Nucl. Phys. A 420, 173 (1984).

    Article  ADS  Google Scholar 

  9. Y. Suzuki, H. Nakada, and S. Miyahara, Phys. Rev. C 94, 024343 (2016).

    Article  ADS  Google Scholar 

  10. Y. Utsuno, T. Otsuka, B. A. Brown, et al., Phys. Rev. C 86, 051301(R) (2012).

  11. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

    ADS  Google Scholar 

  12. W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, J. Phys. G 44, 033001 (2017).

    Article  ADS  Google Scholar 

  13. M. A. Al-Ohali, J. P. Delaroche, C. R. Howell, et al., Phys. Rev. C 86, 034603 (2012).

    Article  ADS  Google Scholar 

  14. O. V. Bespalova, N. A. Fedorov, A. A. Klimochkina, et al., Eur. Phys. J. A 54, 2 (2018).

    Article  ADS  Google Scholar 

  15. M. Wang, G. Audi, A. H. Wapstra, et al., Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  16. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).

    Article  ADS  Google Scholar 

  17. J. M. Mueller, R. J. Charity, R. Shane, et al., Phys. Rev. C 83, 064605 (2011).

    Article  ADS  Google Scholar 

  18. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  19. S. F. Hicks, S. E. Hicks, G. R. Shen, and M. T. McEllistrem, Phys. Rev. C 41, 2560 (1990).

    Article  ADS  Google Scholar 

  20. O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E. A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 71, 36 (2008). doi doi 10.1134/S1063778808010043

    Article  Google Scholar 

  21. H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).

    Article  ADS  Google Scholar 

  22. L. Gaudefroy, O. Sorlin, D. Beaumel, et al., Phys. Rev. Lett. 97, 092501 (2006).

    Article  ADS  Google Scholar 

  23. F. Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009).

    Article  ADS  Google Scholar 

  24. G. Burgunder, O. Sorlin, F. Nowacki, et al., Phys. Rev. Lett. 112, 042502 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Prof. B. S. Ishkhanov and Dr. I. N. Boboshin for helpful discussions and A. A. Kli-mochkina for help in calculations.

Author information

Authors and Affiliations

Authors

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, O.V. Evolution of the Neutron Single-Particle Structure of Neutron-Rich Isotones with N = 28 in the Dispersive Optical Model. Moscow Univ. Phys. 73, 605–611 (2018). https://doi.org/10.3103/S0027134918060048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918060048

Keywords:

Navigation