Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 125–140 | Cite as

Mathematical Methods of Subjective Modeling in Scientific Research. 2: Applications

Theoretical and Mathematical Physics (Review)

Abstract

This article considers applications of the formalism of subjective modeling proposed in [36], based on modeling of uncertainty reflecting unreliability of subjective information and fuzziness common of its content. A subjective model of probabilistic randomness is defined and studied. It is shown that a researcher–modeler (RM) defines a subjective model of a discrete probability space as a space with plausibility and believability that de facto turns out to be a subjective model of the class of subjectively equivalent probability spaces that model an arbitrary evolving stochastic object, and the same space with plausibility and believability is its subjective model. This enables us to empirically recover a subjective model of an evolving stochastic object accurately and using a finite number of event observations, while its probabilistic model cannot be empirically recovered. A similar connection is established between equivalence classes of plausibility and believability distributions and classes of subjectively equivalent absolutely continuous probability densities. For two versions of plausibility and believability measures, entropies of plausibility and believability distributions of the values of an uncertain element (UCE) \(\tilde x\) that model RM’s subjective judgments as characteristics of the information content and uncertainty of his judgments are considered. It is shown that in the first version entropies have properties that are formally similar to those of Shannon entropy but due to absence of the law of large numbers (LLN) their interpretation fundamentally differs from the interpretation of Shannon entropy. In the third version there is an analog of the LLN, and its connection to the Shannon entropy was obtained for the expected value of subjective informational content/uncertainty. A subjective model M(\(\tilde x\) )=(Ω,3(Ω), P ζ,ϰ (·,·;\(\tilde x\) ), N ζ,ϰ (·,·;\(\tilde x\) ) of an uncertain fuzzy element is considered, and an optimal subjective rule of identification of its states using observation data is obtained and studied. Methods of expert-aided reconstruction of fuzzy and uncertain fuzzy element models are also considered.

Keywords

probability randomness possibility necessity fuzziness plausibility belief uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 1 (2017). https://doi.org/10.3103/S002713491701012X CrossRefADSGoogle Scholar
  2. 2.
    Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013). doi doi 10.1134/S2070048213060094MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yu. P. Pyt’ev, Possibility as an Alternative to Probability, 2nd ed. (Fizmatlit, Moscow, 2016).Google Scholar
  4. 4.
    Yu. P. Pyt’ev, Intellekt. Sist. 11, 277 (2007).MathSciNetGoogle Scholar
  5. 5.
    A. L. Tulup’ev, S. I. Nikolenko, and A. V. Sirotkin, Bayesian Networks: A Logical-and-Probabilistic Approach (Nauka, St. Petersburg, 2006).MATHGoogle Scholar
  6. 6.
    A. Josang and R. Hankin, in Proc. 15th Int. Conf. on Information Fusion, Singapore, 2012, p. 1225.Google Scholar
  7. 7.
    A. M. Mironov, Intellekt. Sist. 11, 201 (2007).Google Scholar
  8. 8.
    Applied Fuzzy Systems, Ed. by T. Terano, K. Asai, and M. Sugeno (Elsevier, 1989).Google Scholar
  9. 9.
    Fuzzy Sets and Possibility Theory. Recent Developments, Ed. by P. P. Yager (Pergamon Press, 1982).Google Scholar
  10. 10.
    D. A. Balakin, Yu. M. Nagornyi, and Yu. P. Pyt’ev, in Proc. Int. Conf. “Infinite-Dimensional Analysis, Stochastics, and Mathematical Modeling: New Problems and Methods,” Moscow, Russia, 2014, p.184.Google Scholar
  11. 11.
    V. Bhavsar and A. M. Mironov, in Proc. Workshop on Multi-Valued Logic Programming and Applications, Seattle, WA, 2006, p.73.Google Scholar
  12. 12.
    R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic Networks and Expert Systems (Springer, New York, 1999).MATHGoogle Scholar
  13. 13.
    G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, 1976).MATHGoogle Scholar
  14. 14.
    A. Josang, in Proc. 11th Workshop on Preferences and Soft Constraints, Perugia, Italy, 2011. https://doi.org/home.ifi.uio.no/josang/papers/Jos2011-SofT.pdf.
  15. 15.
    S. S. Stevens, Psychophysics (Wiley, New York, 1975).Google Scholar
  16. 16.
    A. A. Josang, Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 9, 279 (2001).MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley, Hoboken, 2006).MATHGoogle Scholar
  18. 18.
    E. T. Jaynes, IEEE Trans. Syst. Sci. Cybern. 4, 227 (1968).CrossRefGoogle Scholar
  19. 19.
    H. Jeffreys, Proc. R. Soc. London A 186, 453 (1946).CrossRefADSGoogle Scholar
  20. 20.
    L. Zadeh, AI Mag. 7, 85 (1986).Google Scholar
  21. 21.
    P. Wang, in Proc. 10th Conf. on Uncertainty in Artifical Intelligence, Seattle, United States, 1994, p.560.Google Scholar
  22. 22.
    R. R. Yager, Inf. Sci. 41, 93 (1987).CrossRefGoogle Scholar
  23. 23.
    T. Inagaki, IEEE Trans. Reliab. 40, 182 (1991).CrossRefGoogle Scholar
  24. 24.
    D. Dubois and H. Prade, in Reliability Data Collection and Analysis, Ed. by J. Flamm and T. Luisi (Springer, 1992), p.213.Google Scholar
  25. 25.
    F. Smarandache, Int. J. Appl. Math. Stat. 2, 1 (2004).Google Scholar
  26. 26.
    M. A. Klopotek and S.T. Wierzchon, in Belief Functions in Business Decisions, Ed. by R. P. Strivastava and T. J. Mock, (Physica-Verlag, Heidelberg, 2002), p.62.Google Scholar
  27. 27.
    D. A. Balakin, B. I. Volkov, E. G. Elenina, A. S. Kuznetsov, and Yu. P. Pyt’ev, Intellekt. Sist. 18, 33 (2014).MathSciNetGoogle Scholar
  28. 28.
    B. MacMillan, Ann. Math. Stat. 24, 196 (1953).CrossRefGoogle Scholar
  29. 29.
    Yu. P. Pyt’ev and I. A. Shishmarev, Probability Theory, Mathematical Statistics, and Elements of Possibility Theory for Physicists (Mosk. Gos. Univ., Moscow, 2010).Google Scholar
  30. 30.
    D. Dubois, H. T. Nguyen, and H. Prade, in Fundamentals of Fuzzy Sets, Ed. by D. Dubois and H. Prade (Kluwer Academic, Boston, 2000), p.343.Google Scholar
  31. 31.
    S. Guiasu, Information Theory with Applications (McGraw-Hill, New York, 1977).MATHGoogle Scholar
  32. 32.
    Yu. P. Pyt’ev and R. S. Zhivotnikov, Intellekt. Sist. 6, 63 (2002).Google Scholar
  33. 33.
    R. R. Yager, Fuzzy Sets Syst. 50, 279 (1992).CrossRefGoogle Scholar
  34. 34.
    H. E. Kyburg, Jr., and H. E. Smokler, Studies in Subjective Probability (Wiley, New York, 1964).MATHGoogle Scholar
  35. 35.
    L. J. Savage, The Foundations of Statistics (Wiley, New York, 1954).MATHGoogle Scholar
  36. 36.
    Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 73, 1 (2018). doi 10.3103/S0027134918010125.CrossRefADSGoogle Scholar
  37. 37.
    Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 72, 113 (2017). https://doi.org/10.3103/S0027134917010131 CrossRefADSGoogle Scholar
  38. 38.
    Yu. P. Pyt’ev, Methods for Mathematical Modeling of Measuring and Computing Systems, 3rd ed. (Fizmatlit, Moscow, 2012).MATHGoogle Scholar
  39. 39.
    Yu. P. Pyt’ev, Probability, Possibility, and Subjective Modeling in Scientific Research. Mathematical and Empirical Foundations, Applications (Fizmatlit, Moscow, 2018).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations