Advertisement

Moscow University Physics Bulletin

, Volume 73, Issue 2, pp 199–204 | Cite as

Antireflection Layers for Solar Cells Based on Silicon Nanowires Produced on a Doped Wafer

  • A. V. Pavlikov
  • O. V. Rakhimova
  • P. K. Kashkarov
Optics and Spectroscopy. Laser Physics
  • 15 Downloads

Abstract

In this paper, the layers of quantum silicon nanowires produced on highly-doped wafers were studied via the Raman spectroscopy and IR reflection spectroscopy methods. The porosity of layers of different thickness has been determined from IR spectroscopy data using the Bruggeman effective medium model. According to Raman spectroscopy data, the concentration of the free charge carriers in quantum silicon nanowires drops in comparison with that in the wafer. On the basis of these results we conclude that the thickness of a quantum nanowires layer of 2 μm is optimal for its use as an antireflection coating in solar cells. Layers with thicknesses of 10 and 15 μm were studied. It was demonstrated that there is no effect of Raman-scattering enhancement in these layers.

Keywords

silicon nanowires solar cells Raman scattering IR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Saga, NPG Asia Mater. 2, 96 (2010). doi 10.1038/asiamat.2010.82CrossRefGoogle Scholar
  2. 2.
    A. Gaucher, A. Cattoni, C. Dupuis, et al., Nano Lett. 16, 5358 (2016). doi 10.1021/acs.nanolett.6b01240CrossRefADSGoogle Scholar
  3. 3.
    J. Oh, H.-C. Yuan, and H. M. Branz, Nat. Nanotechnol. 7, 743 (2012). doi 10.1038/nnano.2012.166CrossRefADSGoogle Scholar
  4. 4.
    P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012). doi 10.1038/ncomms1691CrossRefADSGoogle Scholar
  5. 5.
    Yu. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1973).Google Scholar
  6. 6.
    D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).CrossRefGoogle Scholar
  7. 7.
    F. Cerdeira, T. A. Fjeldly, and M. Cardona, Phys. Rev. B 9, 4344 (1974).CrossRefADSGoogle Scholar
  8. 8.
    K. V. Bunkov, L. A. Golovan, and K. A. Gonchar, Semiconductors 47, 354 (2013).CrossRefADSGoogle Scholar
  9. 9.
    M. A. Green and M. J. Keevers, Prog. Photovoltaics: Res. Appl. 3, 189 (1995).CrossRefGoogle Scholar
  10. 10.
    I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).CrossRefADSGoogle Scholar
  11. 11.
    L. A. Osminkina, E. V. Kurepina, A. V. Pavlikov, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors 38, 581 (2004).CrossRefADSGoogle Scholar
  12. 12.
    H. Tomioka and S. Adachi, ECS J. Solid State Sci. Technol. 2, 253 (2013). doi 10.1149/2.007306jssCrossRefGoogle Scholar
  13. 13.
    A. Pavlikov, E. Konstantinova, and V. Timoshenko, Phys. Status Solidi C 8, 1928 (2011). doi 10.1002/pssc.201000088CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Pavlikov
    • 1
    • 2
  • O. V. Rakhimova
    • 1
  • P. K. Kashkarov
    • 1
    • 2
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations