Skip to main content
Log in

Generation of a Tsunami from the Submarine Landslide Near the East Coast of Sakhalin Island

  • Physics of Earth, Atmosphere, and Hydrosphere
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The effect of the generation of tsunami waves caused by collapse of the continental slope and by formation of a submarine landslide near the east coast of Sakhalin Island is reproduced within the framework of a hydrodynamic model. The calculations performed using the numerical hydrodynamic model showed that such a submarine landslide can generate a tsunami wave up to 18 m high on the Sakhalin coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Gusiakov, WinITDB (Integrated Tsunami Database for the World Ocean), Version 5.16 (Inst. of Computational Mathematics and Mathematical Geophysics, Novosibirsk, 2010).

    Google Scholar 

  2. S. Bondevik, J. Mangerud, and S. Dawson, EOS 84, 289 (2003).

    Article  ADS  Google Scholar 

  3. A. Romundset and S. Bondevik, J. Quat. Sci. 26, 457 (2011). doi doi 10.1002/jqs.1511

    Article  Google Scholar 

  4. R. Mallet and J. W. Mallet, Fourth Report upon the Facts and Theory of Earthquake Phenomena (Taylor and Francis, London, 1852).

    Google Scholar 

  5. J. P. Bardet, C. E. Synolakis, H. L. Davies, et al., Pure Appl. Geophys. 160, 1793 (2003). doi 10.1007/s00024-003-2406-0

    Article  ADS  Google Scholar 

  6. P. Ren, B. D. Bornhold, and D. B. Prior, Sediment. Geol. 103, 201 (1996). doi 10.1016/0037-0738(95)00090-9

    Article  ADS  Google Scholar 

  7. E. A. Kulikov, A. B. Rabinovich, R. E. Thomson, et al., J. Geophys. Res. 101, 6609 (1996). doi 10.1029/95JC03562

    Article  ADS  Google Scholar 

  8. E. A. Kulikov, A. B. Rabinovich, I. V. Fain, B. D. Bornhold, and R. E. Thomson, Oceanology 38, 323 (1998).

    Google Scholar 

  9. T. S. Murty, J. Geophys. Res. 84, 7777 (1979). doi 10.1029/JC084iC12p07777

    Article  ADS  Google Scholar 

  10. M. Canals, G. Lastras, R. Urgeles, et al., Mar. Geol. 213, 9 (2004). doi 10.1016/j.margeo.2004.10.001

    Article  ADS  Google Scholar 

  11. I. V. Fine, A. Rabinovich, R. E. Thomson, et al., Mar. Geol. 215, 45 (2005). doi 10.1016/j.margeo. 2004.11.007

    Article  ADS  Google Scholar 

  12. E. N. Pelinovskii, Nonlinear Dynamics of Tsunami Waves (Inst. Prikl. Fiz. Akad. Nauk SSSR, Gorky, 1982).

    Google Scholar 

  13. S. F. Dotsenko and V. A. Ivanov, Natural Catastrophes in the Azov–Black Sea Region (Morsk. Gidrofiz. Inst., Sevastopol, 2010).

    Google Scholar 

  14. L. N. Sretenskii, Theory of Wave Motion of Fluids (ONTI, Moscow–Leningrad, 1935).

    Google Scholar 

  15. B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, Cham, 2016), p.263.

    Book  Google Scholar 

  16. L. Jiang and P. H. LeBlond, J. Geophys. Res. 97, 12731 (1992). doi 10.1029/92JC00912

    Article  ADS  Google Scholar 

  17. L. Jiang and P. H. LeBlond, J. Phys. Oceanogr. 24, 559 (1994). doi 10.1175/1520-0485(1994)024<0559: TDMOTG>2.0.CO;2

    Article  ADS  Google Scholar 

  18. P. Heinrich, A. Piatanesi, and H. Hebert, Geophys. J. Int. 145, 97 (2001).

    Article  ADS  Google Scholar 

  19. P. Heinrich, A. Piatanesi, E. Okal, and H. Hebert, Geophys. Res. Lett. 27, 3037 (2000). doi 10.1029/2000GL011497

    Article  ADS  Google Scholar 

  20. F. Imamura, K. Hashi, and M. A. Imteaz, in Tsunami Research at the End of a Critical Decade, Ed. by G. T. Hebenstreit (Springer, Dordrecht, 2001), p.209.

  21. I. V. Fine, A. B. Rabinovich, R. E. Thomson, and E. A. Kulikov, in Submarine Landslides and Tsunamis, Ed. by A. C. Yalçiner, E. N. Pelinovsky, E. Okal, and C. E. Synolakis (Springer, Dordrecht, 2003), p. 69. doi 10.1007/978-94-010-0205-9

  22. L. I. Lobkovsky, R. Kh. Mazova, L. Yu. Kataeva, and B. V. Baranov, Dokl. Earth Sci. 410, 1156 (2006). doi 10.1134/S1028334X0607035X

    Article  ADS  Google Scholar 

  23. A. C. Yalçiner, A. Zaytsev, B. Aytore, et al., Oceanography 27 (2), 68 (2014). http://dx.doi.org/10.5670/oceanog.2014.41

    Article  Google Scholar 

  24. B. V. Baranov, L. I. Lobkovskii, E. A. Kulikov, A. B. Rabinovich, Y. K. Jin, and K. A. Dozorova., Dokl. Earth Sci. 449, 354 (2013).

    Article  ADS  Google Scholar 

  25. B. V. Baranov, K. A. Dozorova, and D. D. Rukavishnikova, Oceanology 55, 906 (2015).

    Article  ADS  Google Scholar 

  26. J. T. Kirby, F. Shi, D. Nicolsky, and S. Misra, Landslides 13, 1421 (2016). doi 10.1007/s10346-016-0682-x

    Article  Google Scholar 

  27. I. V. Fine, A. B. Rabinovich, E. A. Kulikov, et al., in Proc. Int. Conf. on Tsunamis, Paris, France, 1998, p.211.

  28. I. V. Fine, E. A. Kulikov, and J. Y. Cherniawsky, Pure Appl. Geophys. 170, 1295 (2013). doi 10.1007/s00024-012-0555-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ivanova.

Additional information

Original Russian Text © A.A. Ivanova, E.A. Kulikov, I.V. Fine, B.V. Baranov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 2, pp. 113–118.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.A., Kulikov, E.A., Fine, I.V. et al. Generation of a Tsunami from the Submarine Landslide Near the East Coast of Sakhalin Island. Moscow Univ. Phys. 73, 234–239 (2018). https://doi.org/10.3103/S002713491802008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491802008X

Keywords

Navigation