Skip to main content
Log in

A Method for Estimation of the Parameters of the Primary Particle of an Extensive Air Shower by a High-Altitude Detector

  • Physics of Nuclei and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A method for estimation of the parameters of the primary particle of an extensive air shower (EAS) by a high-altitude detector complex is described. This method was developed as part of the Pamir-XXI project. The results may be useful for other high-altitude projects and the EAS method in general. The specific configurations of optical detectors for Cherenkov EAS radiation and charged-particle detectors, the methods for data processing, and the attainable accuracy of reconstruction of parameters of primary particles (energy, direction, mass/type) are presented. The results primarily cover optical detectors that are suitable for studying EASs from primary nuclei in the range of energies E0 = 100 TeV–100 PeV and showers from primary γ-quanta with energies of Eγ ≥ 30 TeV. Grids of charged-particle detectors designed to determine the EAS direction and energy in the E0 = 1 PeV–1 EeV range are also considered. The obtained accuracy estimates are the upper limits of the actual experimental accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Borisov and V. I. Galkin, J. Phys.: Conf. Ser. 409, 012089 (2013). doi 10.1088/1742-6596/409/1/012089

    Google Scholar 

  2. R. A. Antonov, S. P. Beschapov, E. A. Bonvech, et al., J. Phys.: Conf. Ser. 409, 012088 (2013). doi 10.1088/1742-6596/409/1/012088

    Google Scholar 

  3. V. I. Galkin and T. A. Gzhatdoev, Bull. Russ. Acad. Sci.: Phys. 75, 309 (2011). doi 10.3103/S1062873811030166

    Article  Google Scholar 

  4. D. Heck and T. Pierog, CORSIKA User’s Guide (Karlsruhe Inst. for Technology, 2011).

    Google Scholar 

  5. K. Greisen, in Progress in Cosmic Ray Physics, Ed. by J. G. Wilson (North-Holland, Amsterdam, 1956), Vol. 3, p.1.

    Google Scholar 

  6. K. Kamata and J. Nishimura, Prog. Theor. Phys. Suppl. 6, 93 (1958).

    Article  ADS  Google Scholar 

  7. T. C. Weekes, Astrophys. J. 342, 379 (1989).

    Article  ADS  Google Scholar 

  8. F. A. Aharonian, W. Hofmann, A. K. Konopelko, et al., Astropart. Phys. 6, 343 (1997). doi 10.1016/S0927-6505(96)00069-2

    Article  ADS  Google Scholar 

  9. J. Aleksic, S. Ansoldi, L. A. Antonelli, et al., Astropart. Phys. 72, 61 (2016). doi 10.1016/j.astropartphys. 2015.04.004

    Article  ADS  Google Scholar 

  10. V. A. Acciari, M. Beilicke, G. Blaylock, et al., Astrophys. J. 679, 1427 (2008). doi 10.1086/587736

    Article  ADS  Google Scholar 

  11. J. Linsley, in Proc. 15th Int. Cosmic Ray Conf., Plovdiv, Bulgaria, 1977, Vol. 12, p.89.

  12. J. Linsley, in Proc. 16th Int. Cosmic Ray Conf., Kyoto, Japan, 1979, Vol. 9, p.274.

  13. J. Linsley and A. A. Watson, Phys. Rev. Lett. 46, 459 (1981).

    Article  ADS  Google Scholar 

  14. R. Walker and A. A. Watson, J. Phys. G: Nucl. Phys. 7, 1297 (1981).

    Article  ADS  Google Scholar 

  15. M. Unger, EPJ Web Conf. 53, 04009 (2013). doi 10.1051/epjconf/2013530400910.1051/epjconf/20135304009

    Article  Google Scholar 

  16. W. D. Apel, J. C. Arteaga, K. Bekk, et al., Astropart. Phys. 34, 476 (2011). doi 10.1016/j.astropartphys. 2010.10.016

    Article  ADS  Google Scholar 

  17. A. Ivanov (Yakutsk Array Group), EPJ Web Conf. 53, 04003 (2013). doi 10.1051/epjconf/2013530400310.1051/epjconf/20135304003

    Article  Google Scholar 

  18. B. A. Antokhonov, D. Besson, S. F. Beregnev, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 639, 42 (2011). doi 10.1016/j.nima.2010.09.142

    Article  ADS  Google Scholar 

  19. M. Zha (LHAASO Collab.), Int. J. Mod. Phys. Conf. Ser. 10, 147 (2012). doi 10.1142/S2010194512005867

    Article  Google Scholar 

  20. K. Fukunaga, Introduction to Statistical Pattern Recognition (Academic, New York, 1972).

  21. GEANT4 Collab., GEANT4 User’s Guide for Application Developers. Version 10.1 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Galkin.

Additional information

Original Russian Text © V.I. Galkin, A.S. Borisov, R. Bakhromzod, V.V. Batraev, S.Z. Latipova, A.R. Muqumov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 2, pp. 57–64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, V.I., Borisov, A.S., Bakhromzod, R. et al. A Method for Estimation of the Parameters of the Primary Particle of an Extensive Air Shower by a High-Altitude Detector. Moscow Univ. Phys. 73, 179–186 (2018). https://doi.org/10.3103/S0027134918020078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918020078

Keywords

Navigation