Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 558–562 | Cite as

The Validity of the Results of High-Performance Modeling of SiO2 Film Growth

  • V. G. Zhupanov
  • F. V. Grigoriev
  • V. B. Sulimov
  • A. V. Tikhonravov
Condensed Matter Physics


This work is devoted to checking of the validity of the results of high-performance modeling of SiO2 film growth. Modeling of the high-energy deposition process shows that the refractive indices of deposited SiO2 films exceed the refractive index of a fused silica substrate. This is entirely supported by the analysis of spectrophotometric data obtained for practical thin films deposited using the respective deposition technique.


high-performance simulation molecular dynamic thin film growth deposition process silicon dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Optical Thin Films and Coatings, Ed. by A. Piegari and F. Flory (Woodhead, 2013).Google Scholar
  2. 2.
    N. Kaiser and H. K. Pulker, Optical Interference Coatings (Springer, 2003).CrossRefGoogle Scholar
  3. 3.
    M. Taguchi and S. Hamaguchi, Thin Solid Films 515, 4879 (2007). doi 10.1016/j.tsf.2006.10.097ADSCrossRefGoogle Scholar
  4. 4.
    R. Alvarez, J. M. Garcia-Martin, A. Garcia-Valenzuela, M. Macias-Montero, F. J. Ferrer, J. Santiso, V. Rico, J. Cotrino, A. R. Gonzalez-Elipe, and A. Palmero, J. Phys. D 49, 045303 (2016). doi 10.1088/0022-3727/49/4/045303ADSCrossRefGoogle Scholar
  5. 5.
    A. Bahramian, Surf. Interface Anal. 45, 1727 (2013). doi 10.1002/sia.5314CrossRefGoogle Scholar
  6. 6.
    T. Köhler, M. Turowski, H. Ehlers, M. Landmann, D. Ristau, and T. Frauenheim, J. Phys. D 46, 325302 (2013). doi 10.1088/0022-3727/46/32/325302CrossRefGoogle Scholar
  7. 7.
    F. V. Grigoriev, V. B. Sulimov, O. A. Kondakova, I. V. Kochikov, and A. V. Tikhonravov, Moscow Univ. Phys. Bull. 68, 259 (2013). doi 10.3103/S002713491303003XADSCrossRefGoogle Scholar
  8. 8.
    F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, et al., Int. J. High Perform. Comput. Appl. 29, 184 (2015). doi 10.1177/1094342014560591CrossRefGoogle Scholar
  9. 9.
    F. V. Grigoriev, Moscow Univ. Phys. Bull. 70, 521 (2015). doi 10.3103/S0027134915060107ADSCrossRefGoogle Scholar
  10. 10.
    F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, J. Non-Cryst. Solids 448, 1 (2016). Scholar
  11. 11.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). Scholar
  12. 12.
    V. Sadovnichy, A. Tikhonravov, V. I. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, 2013), p. 283.Google Scholar
  13. 13.
    F. K. Grigoriev, E. V. Katkova, A. V. Sulimov, V. Sulimov, I. V. Kochikov, and A. V. Tikhonravov, Opt. Mater. Express 6, 3960 (2016).CrossRefGoogle Scholar
  14. 14.
    K. Vedam and P. Limsuwan, J. Chem. Phys. 69, 4772 (1978). Scholar
  15. 15.
    V. K. Leko and O. V. Mazurin, Properties of Quartz Glass, Ed. by B. G. Varshal (Nauka, Leningrad, 1985).Google Scholar
  16. 16.
    A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. Krasilnikova, M. L. Grilli, and D. Ristau, Appl. Opt. 50, C75 (2011). Scholar
  17. 17. Scholar
  18. 18.
    A. V. Tikhonravov, M. K. Trubetskov, and G. DeBell, Proc. SPIE 5188, 190 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. G. Zhupanov
    • 1
  • F. V. Grigoriev
    • 2
  • V. B. Sulimov
    • 2
  • A. V. Tikhonravov
    • 2
  1. 1.Luch Research and Production AssociationPodol’sk, Moscow oblastRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia

Personalised recommendations