Skip to main content
Log in

Nanometer Scale Lithography with Evaporated Polystyrene

  • Engineering Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

We report on a fabrication method of extremely small metallic nanostructures which uses commercially available polystyrene with low molecular weight as a negative resist for electron-beam lithography. The samples were covered with polystyrene by physical vapor deposition. The method allows to form structures with a high (5–10 nm) spatial resolution and a high yield on non-uniform arbitrary shaped surfaces. The technological processes for forming line or dot arrays, electrodes with nanogaps, and radially located electrodes were developed. The process parameters are presented in this work. The possibility of fabrication of nanostructures on a cantilever tip apex of the scanning probe microscope was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, C. Con, and B. Cui, ACS Nano 8, 3483 (2014). doi 10.1021/nn4064659

    Article  Google Scholar 

  2. B. Bhushan and O. Marti, in Springer Handbook of Nanotechnology (Springer, 2010), p. 573.

    Book  Google Scholar 

  3. M. Consales, A. Ricciardi, A. Crescitelli, et al., ACS Nano 6, 3163 (2012). doi doi 10.1021/nn204953e

    Google Scholar 

  4. H. Park, J. Jung, D. K. Min, et al., Appl. Phys. Lett. 84, 1734 (2004). doi 10.1063/1.1667266

    Article  ADS  Google Scholar 

  5. S. H. Lee, G. Lim, W. Moon, et al., Ultramicroscopy 108, 1094 (2008). doi 10.1016/j.ultramic.2008.04.034

    Article  Google Scholar 

  6. K. Shin, D. sil Kang, S. hoon Lee, and W. Moon, Ultramicroscopy 159, 1 (2015). doi 10.1016/j.ultramic. 2015.07.007

    Article  Google Scholar 

  7. H. Ko, K. Ryu, H. Park, et al., Nano Lett. 11, 1428 (2011). doi 10.1021/nl103372a

    Article  ADS  Google Scholar 

  8. H. T. Brenning, S. E. Kubatkin, D. Erts, et al., Nano Lett. 6, 937 (2006). doi 10.1021/nl052526t

    Article  ADS  Google Scholar 

  9. M. Yoo, T. Fulton, H. Hess, et al., Science 276, 579 (1997). doi 10.1126/science.276.5312.579

    Article  Google Scholar 

  10. M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). doi 10.1038/nnano.2006.208

    Article  ADS  Google Scholar 

  11. A. Han, J. Chervinsky, D. Branton, and J. A. Golovchenko, Rev. Sci. Instrum. 82, 065110 (2011). doi 10.1063/1.3601005

    Article  ADS  Google Scholar 

  12. J. Chang, Q. Zhou, and A. Zettl, Appl. Phys. Lett. 105, 173109 (2014). doi 10.1063/1.4900505

    Article  ADS  Google Scholar 

  13. I. Adesida, T. Everhart, and R. Shimizu, J. Vac. Sci. Technol. 16, 1743 (1979). doi 10.1116/1.570285

    Article  ADS  Google Scholar 

  14. V. Shorokhov, D. Presnov, S. Amitonov, et al., Nanoscale 9, 613 (2017). doi 10.1039/c6nr07258e

    Article  Google Scholar 

  15. M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012). doi 10.1038/nnano.2012.21

    Article  ADS  Google Scholar 

  16. S. Kubatkin, A. Danilov, M. Hjort, et al., Nature 425, 698 (2003). doi doi 10.1038/nature02010

    Article  ADS  Google Scholar 

  17. C. Thelander, M. H. Magnusson, K. Deppert, et al., Appl. Phys. Lett. 79, 2106 (2001). doi 10.1063/1.1405154

    Article  ADS  Google Scholar 

  18. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, G. B. Khomutov, C. P. Gubin, and V. V. Kolesov, JETP Lett. 64, 556 (1996). doi 10.1134/1.567234

    Article  ADS  Google Scholar 

  19. K. Liu, P. Avouris, J. Bucchignano, et al., Appl. Phys. Lett. 80, 865 (2002). doi 10.1063/1.1436275

    Article  ADS  Google Scholar 

  20. S. Dagesyan, A. Stepanov, E. Soldatov, and G. Zharik, Proc. SPIE 9440, 94400P (2014). doi 10.1117/12.2181137

    Google Scholar 

  21. S. De Franceschi and L. Kouwenhoven, Nature 417, 701 (2002). doi 10.1038/417701a

    Article  ADS  Google Scholar 

  22. Y. Huang, X. Duan, and C. M. Lieber, Small 1, 142 (2005). doi 10.1002/smll.200400030

    Article  Google Scholar 

  23. C. L. Beyler and M. M. Hirschler, in SFPE Handbook of Fire Protection Engineering, 3rd ed. (National Fire Protection Association, 2002), p. 110.

    Google Scholar 

  24. S. Bose, C. Lawrence, Z. Liu, et al., Nat. Nanotechnol. 10, 1048 (2015). doi 10.1038/nnano.2015.207

    Article  ADS  Google Scholar 

  25. T. H. P. Chang, J. Vac. Sci. Technol. 12, 1271 (1975). doi 10.1116/1.568515

    Article  ADS  Google Scholar 

  26. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, et al., Nano Lett. 15, 6985 (2015). doi 10.1021/acs.nanolett.5b02989

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zharik.

Additional information

Original Russian Text © G.A. Zharik, S.A. Dagesyan, E.S. Soldatov, D.E. Presnov, V.A. Krupenin, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 6, pp. 121–126.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharik, G.A., Dagesyan, S.A., Soldatov, E.S. et al. Nanometer Scale Lithography with Evaporated Polystyrene. Moscow Univ. Phys. 72, 627–632 (2017). https://doi.org/10.3103/S0027134917060224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917060224

Keywords

Navigation