Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 627–632 | Cite as

Nanometer Scale Lithography with Evaporated Polystyrene

  • G. A. Zharik
  • S. A. Dagesyan
  • E. S. Soldatov
  • D. E. Presnov
  • V. A. Krupenin
Engineering Physics

Abstract

We report on a fabrication method of extremely small metallic nanostructures which uses commercially available polystyrene with low molecular weight as a negative resist for electron-beam lithography. The samples were covered with polystyrene by physical vapor deposition. The method allows to form structures with a high (5–10 nm) spatial resolution and a high yield on non-uniform arbitrary shaped surfaces. The technological processes for forming line or dot arrays, electrodes with nanogaps, and radially located electrodes were developed. The process parameters are presented in this work. The possibility of fabrication of nanostructures on a cantilever tip apex of the scanning probe microscope was also demonstrated.

Keywords

electron-beam lithography evaporated resist polystyrene nanostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zhang, C. Con, and B. Cui, ACS Nano 8, 3483 (2014). doi 10.1021/nn4064659CrossRefGoogle Scholar
  2. 2.
    B. Bhushan and O. Marti, in Springer Handbook of Nanotechnology (Springer, 2010), p. 573.CrossRefGoogle Scholar
  3. 3.
    M. Consales, A. Ricciardi, A. Crescitelli, et al., ACS Nano 6, 3163 (2012). doi doi 10.1021/nn204953eGoogle Scholar
  4. 4.
    H. Park, J. Jung, D. K. Min, et al., Appl. Phys. Lett. 84, 1734 (2004). doi 10.1063/1.1667266ADSCrossRefGoogle Scholar
  5. 5.
    S. H. Lee, G. Lim, W. Moon, et al., Ultramicroscopy 108, 1094 (2008). doi 10.1016/j.ultramic.2008.04.034CrossRefGoogle Scholar
  6. 6.
    K. Shin, D. sil Kang, S. hoon Lee, and W. Moon, Ultramicroscopy 159, 1 (2015). doi 10.1016/j.ultramic. 2015.07.007CrossRefGoogle Scholar
  7. 7.
    H. Ko, K. Ryu, H. Park, et al., Nano Lett. 11, 1428 (2011). doi 10.1021/nl103372aADSCrossRefGoogle Scholar
  8. 8.
    H. T. Brenning, S. E. Kubatkin, D. Erts, et al., Nano Lett. 6, 937 (2006). doi 10.1021/nl052526tADSCrossRefGoogle Scholar
  9. 9.
    M. Yoo, T. Fulton, H. Hess, et al., Science 276, 579 (1997). doi 10.1126/science.276.5312.579CrossRefGoogle Scholar
  10. 10.
    M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). doi 10.1038/nnano.2006.208ADSCrossRefGoogle Scholar
  11. 11.
    A. Han, J. Chervinsky, D. Branton, and J. A. Golovchenko, Rev. Sci. Instrum. 82, 065110 (2011). doi 10.1063/1.3601005ADSCrossRefGoogle Scholar
  12. 12.
    J. Chang, Q. Zhou, and A. Zettl, Appl. Phys. Lett. 105, 173109 (2014). doi 10.1063/1.4900505ADSCrossRefGoogle Scholar
  13. 13.
    I. Adesida, T. Everhart, and R. Shimizu, J. Vac. Sci. Technol. 16, 1743 (1979). doi 10.1116/1.570285ADSCrossRefGoogle Scholar
  14. 14.
    V. Shorokhov, D. Presnov, S. Amitonov, et al., Nanoscale 9, 613 (2017). doi 10.1039/c6nr07258eCrossRefGoogle Scholar
  15. 15.
    M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012). doi 10.1038/nnano.2012.21ADSCrossRefGoogle Scholar
  16. 16.
    S. Kubatkin, A. Danilov, M. Hjort, et al., Nature 425, 698 (2003). doi doi 10.1038/nature02010ADSCrossRefGoogle Scholar
  17. 17.
    C. Thelander, M. H. Magnusson, K. Deppert, et al., Appl. Phys. Lett. 79, 2106 (2001). doi 10.1063/1.1405154ADSCrossRefGoogle Scholar
  18. 18.
    E. S. Soldatov, V. V. Khanin, A. S. Trifonov, D. E. Presnov, S. A. Yakovenko, G. B. Khomutov, C. P. Gubin, and V. V. Kolesov, JETP Lett. 64, 556 (1996). doi 10.1134/1.567234ADSCrossRefGoogle Scholar
  19. 19.
    K. Liu, P. Avouris, J. Bucchignano, et al., Appl. Phys. Lett. 80, 865 (2002). doi 10.1063/1.1436275ADSCrossRefGoogle Scholar
  20. 20.
    S. Dagesyan, A. Stepanov, E. Soldatov, and G. Zharik, Proc. SPIE 9440, 94400P (2014). doi 10.1117/12.2181137Google Scholar
  21. 21.
    S. De Franceschi and L. Kouwenhoven, Nature 417, 701 (2002). doi 10.1038/417701aADSCrossRefGoogle Scholar
  22. 22.
    Y. Huang, X. Duan, and C. M. Lieber, Small 1, 142 (2005). doi 10.1002/smll.200400030CrossRefGoogle Scholar
  23. 23.
    C. L. Beyler and M. M. Hirschler, in SFPE Handbook of Fire Protection Engineering, 3rd ed. (National Fire Protection Association, 2002), p. 110.Google Scholar
  24. 24.
    S. Bose, C. Lawrence, Z. Liu, et al., Nat. Nanotechnol. 10, 1048 (2015). doi 10.1038/nnano.2015.207ADSCrossRefGoogle Scholar
  25. 25.
    T. H. P. Chang, J. Vac. Sci. Technol. 12, 1271 (1975). doi 10.1116/1.568515ADSCrossRefGoogle Scholar
  26. 26.
    M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, et al., Nano Lett. 15, 6985 (2015). doi 10.1021/acs.nanolett.5b02989ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • G. A. Zharik
    • 1
  • S. A. Dagesyan
    • 1
  • E. S. Soldatov
    • 1
  • D. E. Presnov
    • 1
    • 2
  • V. A. Krupenin
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations