Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 574–581 | Cite as

Research on Electron Emission from Dielectric Materials by a Monte Carlo Method

Condensed Matter Physics

Abstract

The charge accumulation in an insulating material under an electron beam bombardment exerts a significant influence to scanning electron microscopic imaging. This work investigates the charging formation process by a self-consistent Monte Carlo simulation of charge production and transportation based on a charge dynamics model. The charging effect in a semi-infinite SiO2 bulk and SiO2 trapezoidal lines on a SiO2 or Si substrate has been studied. We used two methods to calculate the spatial distributions of electric potential and electric field for two different systems respectively: the image charge method was used to deal with a semi-infinite bulk, and, random walk method to solve the Poisson equation for a complex geometric structure. The dynamic charging behavior depending on irradiation time has been investigated for SiO2. The simulated CD-SEM images of SiO2 trapezoidal lines with charging effect included were compared well with experimental results, showing the contrast change of SEM image along with scanning frames due to charging.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hoffmann, J. R. Dennison, C. D. Thomson and J. Albretsen, IEEE Trans. Plasma Sci. 36, 2238 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    H. J. Fitting and M. Touzin, J. Appl. Phys. 110, 044111 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    H. Abe, S. Babin, S. Borisov, A. Hamaguchi, M. Kadowaki, Y. Miyano, and Y. Yamazaki, J. Vac. Sci. Technol. B 27, 1039 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Babin, S. Borisov, Y. Miyano, H. Abe, M. Kadowaki, A. Hamaguchi, and Y. Yamazaki, Proc. SPIE 6922, 692219 (2008).CrossRefGoogle Scholar
  5. 5.
    K. Ohya, K. Inai, H. Kuwada, T. Hayashi, and M. Saito, Surf. Coat. Technol. 202, 5310 (2008).CrossRefGoogle Scholar
  6. 6.
    S. L. Roy, F. Baudoin, V. Griseri, C. Laurent, and G. Teyssedre, J. Phys. D: Appl. Phys. 43, 315402 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Touzin and D. Goeuriot, J. Appl. Phys. 99, 114110 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    A. Seeger, A. Duci, and H. Haussecker, Scanning 28, 179 (2006).CrossRefGoogle Scholar
  9. 9.
    N. Ghorbel, S. Fakhfakh, O. Jbara, S. Odof, S. Rondot, Z. Fakhfakh, and A. Kallel, J. Phys. D 38, 1239 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    J. Cazaux, J. Appl. Phys. 95, 731 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    R. Renoud, F. Mady, C. Attard, J. Bigarré, and J.-P. Ganachaud, Phys. Status Solidi (a) 201, 2119 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    E. Schreiber and H. J. Fitting, J. Electron Spectrosc. Relat. Phenom. 124, 25 (2002).CrossRefGoogle Scholar
  13. 13.
    O. Jbara, B. Portron, D. Mouze, and J. Cazaux, X-Ray Spectrom. 26, 291 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    A. Miotello and M. Dapor, Phys. Rev. B 56, 2241 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    M. Kotera and H. Suga, J. Appl. Phys. 63, 261 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    J. Cazaux, J. Appl. Phys. 59, 1418 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    K. Kanaya, S. Ono, and F. Ishigaki, J. Phys. D 11, 2425 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    S. Fakhfakh, O. Jbara, S. Rondot, E. I. Rau, and Z. Fakhfakh, J. Phys. D 41, 1 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Ji, L. Wang, X. Quan, J. Fu, Y. Zhang, X. Xu, T. Zhong, B. Wei, and C. Liu, Scanning 29, 230 (2007).CrossRefGoogle Scholar
  20. 20.
    N. Ghorbel, S. Fakhfakh, O. Jbara, S. Odof, S. Rondot, Z. Fakhfakh, and A. Kallel, J. Phys. D 38, 1239 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    G. Blaise and D. Braga, Phys. Chem. News 10, 1 (2003).Google Scholar
  22. 22.
    J. Bigarre, C. Attard, P. Hourquebie, and J. Matallana, IEEE Trans. Dielectr. Electr. Insul. 8, 942 (2001).CrossRefGoogle Scholar
  23. 23.
    J. Cazaux, Eur. Phys. J. AP 15, 167 (2001). 24.ADSCrossRefGoogle Scholar
  24. 24.
    R. Tanaka, H. Sunaga, and N. Tamura, IEEE Trans. Nucl. Sci. 4, 4670 (1979). 25.ADSCrossRefGoogle Scholar
  25. 25.
    Y. C. Yong, J. T. L. Thong, and J. C. H. Phang, J. Appl. Phys. 84, 4543 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    Z. J. Ding and R. Shimizu, Scanning 18, 92 (1996).CrossRefGoogle Scholar
  27. 27.
    S. F. Mao, Y. G. Li, R. G. Zeng, and Z. J. Ding, J. Appl. Phys. 104, 114907 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    N. F. Mott, Proc. R. Soc. London A 124, 425 (1929).ADSCrossRefGoogle Scholar
  29. 29.
    R. A. Bonham and T. G. Strand, J. Chem. Phys. 39, 2200 (1963).ADSCrossRefGoogle Scholar
  30. 30.
    D. R. Penn, Phys. Rev. B 35, 482 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    K. O. Jensen and A. B. Walker, Surf. Sci. 292, 83 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    E. D. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1991).Google Scholar
  33. 33.
    M. Bossy, N. Champagnat, S. Maire, and D. Talay, Math. Model. Numer. Anal. 44, 997 (2010).CrossRefGoogle Scholar
  34. 34.
    K. Chatterjee, Prog. Electromagn. Res. 57, 237 (2006).CrossRefGoogle Scholar
  35. 35.
    M. K. Chati, M. D. Grigoriu, S. S. Kulkarni, and S. Mukherjee, Int. J. Numer. Methods Eng. 51, 1133 (2001).CrossRefGoogle Scholar
  36. 36.
    R. Ettelaie, J. Chem. Phys. 103, 3657 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    M. N. O. Sadiku and R. C. Garcia, in Proc. IEEE Southeastcon '93, Charlotte, United States, 1993.Google Scholar
  38. 38.
    D. C. Joy, Scanning 17, 270 (1995).CrossRefGoogle Scholar
  39. 39.
    M. Dapor, J. Phys.: Conf. Ser. 402, 012003 (2012). doi 10.1088/1742-6596/402/1/012003Google Scholar
  40. 40.
    A. E. Vladár, P. Cizmar, J. S. Villarrubia, and M. T. Postek, Proc. SPIE 8324, 832402 (2012).CrossRefGoogle Scholar
  41. 41.
    P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding, Scanning 34, 145 (2012).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.A School of Electronic Information EngineeringYangtze Normal UniversityChongqingChina
  2. 2.Hefei National Laboratory for Physical Sciences at Microscale and Department of PhysicsUniversity of Science and Technology of ChinaHefei, AnhuiChina

Personalised recommendations