Skip to main content
Log in

Research on Electron Emission from Dielectric Materials by a Monte Carlo Method

  • Condensed Matter Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The charge accumulation in an insulating material under an electron beam bombardment exerts a significant influence to scanning electron microscopic imaging. This work investigates the charging formation process by a self-consistent Monte Carlo simulation of charge production and transportation based on a charge dynamics model. The charging effect in a semi-infinite SiO2 bulk and SiO2 trapezoidal lines on a SiO2 or Si substrate has been studied. We used two methods to calculate the spatial distributions of electric potential and electric field for two different systems respectively: the image charge method was used to deal with a semi-infinite bulk, and, random walk method to solve the Poisson equation for a complex geometric structure. The dynamic charging behavior depending on irradiation time has been investigated for SiO2. The simulated CD-SEM images of SiO2 trapezoidal lines with charging effect included were compared well with experimental results, showing the contrast change of SEM image along with scanning frames due to charging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hoffmann, J. R. Dennison, C. D. Thomson and J. Albretsen, IEEE Trans. Plasma Sci. 36, 2238 (2008).

    Article  ADS  Google Scholar 

  2. H. J. Fitting and M. Touzin, J. Appl. Phys. 110, 044111 (2011).

    Article  ADS  Google Scholar 

  3. H. Abe, S. Babin, S. Borisov, A. Hamaguchi, M. Kadowaki, Y. Miyano, and Y. Yamazaki, J. Vac. Sci. Technol. B 27, 1039 (2009).

    Article  Google Scholar 

  4. S. Babin, S. Borisov, Y. Miyano, H. Abe, M. Kadowaki, A. Hamaguchi, and Y. Yamazaki, Proc. SPIE 6922, 692219 (2008).

    Article  Google Scholar 

  5. K. Ohya, K. Inai, H. Kuwada, T. Hayashi, and M. Saito, Surf. Coat. Technol. 202, 5310 (2008).

    Article  Google Scholar 

  6. S. L. Roy, F. Baudoin, V. Griseri, C. Laurent, and G. Teyssedre, J. Phys. D: Appl. Phys. 43, 315402 (2010).

    Article  Google Scholar 

  7. M. Touzin and D. Goeuriot, J. Appl. Phys. 99, 114110 (2006).

    Article  ADS  Google Scholar 

  8. A. Seeger, A. Duci, and H. Haussecker, Scanning 28, 179 (2006).

    Article  Google Scholar 

  9. N. Ghorbel, S. Fakhfakh, O. Jbara, S. Odof, S. Rondot, Z. Fakhfakh, and A. Kallel, J. Phys. D 38, 1239 (2005).

    Article  ADS  Google Scholar 

  10. J. Cazaux, J. Appl. Phys. 95, 731 (2004).

    Article  ADS  Google Scholar 

  11. R. Renoud, F. Mady, C. Attard, J. Bigarré, and J.-P. Ganachaud, Phys. Status Solidi (a) 201, 2119 (2004).

    Article  ADS  Google Scholar 

  12. E. Schreiber and H. J. Fitting, J. Electron Spectrosc. Relat. Phenom. 124, 25 (2002).

    Article  Google Scholar 

  13. O. Jbara, B. Portron, D. Mouze, and J. Cazaux, X-Ray Spectrom. 26, 291 (1997).

    Article  ADS  Google Scholar 

  14. A. Miotello and M. Dapor, Phys. Rev. B 56, 2241 (1997).

    Article  ADS  Google Scholar 

  15. M. Kotera and H. Suga, J. Appl. Phys. 63, 261 (1988).

    Article  ADS  Google Scholar 

  16. J. Cazaux, J. Appl. Phys. 59, 1418 (1985).

    Article  ADS  Google Scholar 

  17. K. Kanaya, S. Ono, and F. Ishigaki, J. Phys. D 11, 2425 (1978).

    Article  ADS  Google Scholar 

  18. S. Fakhfakh, O. Jbara, S. Rondot, E. I. Rau, and Z. Fakhfakh, J. Phys. D 41, 1 (2008).

    Article  Google Scholar 

  19. Y. Ji, L. Wang, X. Quan, J. Fu, Y. Zhang, X. Xu, T. Zhong, B. Wei, and C. Liu, Scanning 29, 230 (2007).

    Article  Google Scholar 

  20. N. Ghorbel, S. Fakhfakh, O. Jbara, S. Odof, S. Rondot, Z. Fakhfakh, and A. Kallel, J. Phys. D 38, 1239 (2005).

    Article  ADS  Google Scholar 

  21. G. Blaise and D. Braga, Phys. Chem. News 10, 1 (2003).

    Google Scholar 

  22. J. Bigarre, C. Attard, P. Hourquebie, and J. Matallana, IEEE Trans. Dielectr. Electr. Insul. 8, 942 (2001).

    Article  Google Scholar 

  23. J. Cazaux, Eur. Phys. J. AP 15, 167 (2001). 24.

    Article  ADS  Google Scholar 

  24. R. Tanaka, H. Sunaga, and N. Tamura, IEEE Trans. Nucl. Sci. 4, 4670 (1979). 25.

    Article  ADS  Google Scholar 

  25. Y. C. Yong, J. T. L. Thong, and J. C. H. Phang, J. Appl. Phys. 84, 4543 (1998).

    Article  ADS  Google Scholar 

  26. Z. J. Ding and R. Shimizu, Scanning 18, 92 (1996).

    Article  Google Scholar 

  27. S. F. Mao, Y. G. Li, R. G. Zeng, and Z. J. Ding, J. Appl. Phys. 104, 114907 (2008).

    Article  ADS  Google Scholar 

  28. N. F. Mott, Proc. R. Soc. London A 124, 425 (1929).

    Article  ADS  Google Scholar 

  29. R. A. Bonham and T. G. Strand, J. Chem. Phys. 39, 2200 (1963).

    Article  ADS  Google Scholar 

  30. D. R. Penn, Phys. Rev. B 35, 482 (1987).

    Article  ADS  Google Scholar 

  31. K. O. Jensen and A. B. Walker, Surf. Sci. 292, 83 (1993).

    Article  ADS  Google Scholar 

  32. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1991).

    Google Scholar 

  33. M. Bossy, N. Champagnat, S. Maire, and D. Talay, Math. Model. Numer. Anal. 44, 997 (2010).

    Article  Google Scholar 

  34. K. Chatterjee, Prog. Electromagn. Res. 57, 237 (2006).

    Article  Google Scholar 

  35. M. K. Chati, M. D. Grigoriu, S. S. Kulkarni, and S. Mukherjee, Int. J. Numer. Methods Eng. 51, 1133 (2001).

    Article  Google Scholar 

  36. R. Ettelaie, J. Chem. Phys. 103, 3657 (1995).

    Article  ADS  Google Scholar 

  37. M. N. O. Sadiku and R. C. Garcia, in Proc. IEEE Southeastcon '93, Charlotte, United States, 1993.

    Google Scholar 

  38. D. C. Joy, Scanning 17, 270 (1995).

    Article  Google Scholar 

  39. M. Dapor, J. Phys.: Conf. Ser. 402, 012003 (2012). doi 10.1088/1742-6596/402/1/012003

    Google Scholar 

  40. A. E. Vladár, P. Cizmar, J. S. Villarrubia, and M. T. Postek, Proc. SPIE 8324, 832402 (2012).

    Article  Google Scholar 

  41. P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding, Scanning 34, 145 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhang.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. Research on Electron Emission from Dielectric Materials by a Monte Carlo Method. Moscow Univ. Phys. 72, 574–581 (2017). https://doi.org/10.3103/S0027134917060212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917060212

Navigation