Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 539–543 | Cite as

The Self-Similarity Index of the Convergence of Strong Cylindrical Shock Waves in a Gas with a Uniform Density

  • U. Yusupaliev
  • N. N. Sysoev
  • S. A. Shuteev
  • S. T. Belyakin
Radiophysics, Electronics, Acoustics
  • 1 Downloads

Abstract

A model of the convergence of cylindrical shock waves (SWs) in a gas with a uniform density has been considered. The partial differential equations of this model have been reduced to ordinary differential equations, from which the law of convergence of such shock waves and the dependence α = f(γ, γeff) of their self-similarity index α on the heat-capacity ratio in front of the shock wave (γ) and behind the shock wave front (γeff) of the gas have been found. This dependence for cylindrical shock waves has been shown to agree with the experimental data within the measurement error.

Keywords

converging strong cylindrical shock waves in gas self-similarity index differential equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Guderley, Luftfahrtforschung 19, 302 (1942).MathSciNetGoogle Scholar
  2. 2.
    L. D. Landau and K. P. Stanyukovich, Dokl. Akad. Nauk SSSR 46, 399 (1945).Google Scholar
  3. 3.
    K. Stanyukovich, Unsteady Motion of Continous Media (Pergamon, Oxford, 1960).Google Scholar
  4. 4.
    D. Butler, Converging Spherical and Cylindrical Shocks (Armament Res. Estab., 1954).Google Scholar
  5. 5.
    Y. Fujimoto and E. Mishkin, Phys. Fluids 21, 1933 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Nakamura, Phys. Fluids 26, 1234 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    P. Hafner, J. Appl. Math. 48, 1244 (1988).Google Scholar
  8. 8.
    M. Van Dyke and A. Guttman, J. Fluid Mech. 120, 451 (1982).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Ponchaut, H. G. Hornung, and D. I. Mouton, J. Fluid. Mech. 560, 103 (2006).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Lazarus and R. Richtmyer, Similarity Solutions for Converging Shocks (Los Alamos National Laboratory, Los Alamos, 1977).Google Scholar
  11. 11.
    R. Lazarus, SIAM J. Numer. Anal. 18, 316 (1981).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Ponchaut, H. G. Hornung, and D. I. Mouton, J. Fluid. Mech. 560, 103 (2006).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. G. Hornung, D. I. Pullin, and N. Ponchaut, Acta Mech. 201, 31 (2008).CrossRefGoogle Scholar
  14. 14.
    Kh. F. Valiyev and A. N. Kraiko, J. Appl. Math. Mech. 75, 218 (2011).CrossRefGoogle Scholar
  15. 15.
    W. Chester, Philos. Mag. 45, 1293 (1954).MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Chisnell, J. Fluid Mech. 2, 286 (1957).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Whitham, J. Fluid Mech. 2, 145 (1957).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Chisnell, J. Fluid Mech. 354, 357 (1998).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Matsuo and Y. Nakamura, J. Appl. Phys. 51, 3126 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    H. Matsuo and Y. Nakamura, J. Appl. Phys. 52, 4503 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    P. Baronets, Fluid Dyn. 19, 503 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    P. Baronets, Fluid Dyn. 29, 129 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    K. Takayama, H. Kleine, and H. Gronig, Exp. Fluids 5, 315 (1987).CrossRefGoogle Scholar
  24. 24.
    M. Kjellander, N. Tillmark, and N. Apazidisa, Phys. Fluids 23, 116103 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    C. K. Chu and R. A. Gross, in Advances in Plasma Physics, Ed. by A. Simon and W. B. Thompson (Wiley, New York, 1969), Vol. 2, p. 139.ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • U. Yusupaliev
    • 1
  • N. N. Sysoev
    • 1
  • S. A. Shuteev
    • 1
  • S. T. Belyakin
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations