Advertisement

Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 513–517 | Cite as

The Effects of Vacuum Nonlinear Electrodynamics in a Electric Dipole Field

  • M. I. Vasili’ev
  • V. I. Denisov
  • A. V. Kozar’
  • P. A. Tomasi-Vshivtseva
Theoretical and Mathematical Physics

Abstract

The non-linear action of an electric dipole field on the propagation of electromagnetic waves within the eikonal approximation of parameterized post-Maxwellian vacuum electrodynamics is investigated. The angles of the nonlinear electrodynamics curvature of rays, along which electromagnetic pulses propagate, and the time difference of the propagation of normal waves from the electromagnetic radiation source to the receiver are calculated.

Keywords

nonlinear electrodynamics of vacuum electric dipole field effective pseudo-Riemannian spacetime ray equations normal mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations (Cambridge Univ. Press, 2005).zbMATHGoogle Scholar
  2. 2.
    V. R. Khalilov, Electrons in Strong Electromagnetic Fields: An Advanced Classical and Quantum Treatment (Gordon and Breach, 1996).Google Scholar
  3. 3.
    P. A. Vshivtseva, V. I. Denisov, and I. P. Denisova, Dokl. Phys. 47, 798 (2002). doi 10.1134/1.1526425ADSCrossRefGoogle Scholar
  4. 4.
    V. I. Denisov and I. P. Denisova, Opt. Spectrosc. 90, 282 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, 1981).Google Scholar
  6. 6.
    W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Denisov and S. I. Svertilov, Astron. Astrophys. 399, L39 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    M. Born and L. Infeld, Proc. R. Soc. London A 144, 425 (1934).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Denisov, Theor. Math. Phys. 132, 1071 (2002).CrossRefGoogle Scholar
  10. 10.
    V. I. Denisov and S. I. Svertilov, Phys. Rev. D 71, 063002 (2005). doi 10.1103/PhysRevD.71.063002ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1972).zbMATHGoogle Scholar
  12. 12.
    K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 93 (2015). doi 10.3103/S0027134915020137ADSCrossRefGoogle Scholar
  13. 13.
    K. V. Zhukovsky, Moscow Univ. Phys. Bull. 71, 237 (2016). doi 10.3103/S0027134916030164ADSCrossRefGoogle Scholar
  14. 14.
    D. Kramer, H. Stephani, M. MacCullum, and E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge Univ. Press, 1981).Google Scholar
  15. 15.
    O. V. Kechkin and P. A. Mosharev, Int. J. Mod. Phys. A 31, 1650127 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    O. V. Kechkin and P. A. Mosharev, Mod. Phys. Lett. A 31, 1650169 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. Paredes, D. Novoa, D. Tommasini, et al., J. Phys. B 47, 065601 (2014). doi 10.1088/0953-4075/47/6/065601ADSCrossRefGoogle Scholar
  18. 18.
    J. Franklin and T. Garon, Phys. Lett. A 375, 1391 (2011). doi 10.1016/j.physleta.2011.02.012ADSCrossRefGoogle Scholar
  19. 19.
    V. I. Denisov and I. P. Denisova, Opt. Spectrosc. 90, 928 (2001). doi 10.1134/1.1380794ADSCrossRefGoogle Scholar
  20. 20.
    G. O. Schellstede, V. Perlick, and C. Lämmerzahl, Phys. Rev. D 92, 025039 (2015). doi 10.1103/Phys-RevD.92.025039ADSCrossRefGoogle Scholar
  21. 21.
    V. I. Denisov, I. P. Denisova, A. B. Pimenov, and V. A. Sokolov, Eur. Phys. J. C 76, 612 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    H. Grote, Phys. Rev. D 91, 022002 (2015). doi 10.1103/PhysRevD.91.022002ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Denisov, V. A. Ilyina, and V. A. Sokolov, Int. J. Mod. Phys. D 25, 1640003 (2016). doi 10.1142/S0218271816400034ADSCrossRefGoogle Scholar
  24. 24.
    M. Abishev, Y. Aimuratov, Y. Aldabergenov, et al., Astropart. Phys. 73, 8 (2016). doi 10.1016/j.astropartphys. 2015.04.010ADSCrossRefGoogle Scholar
  25. 25.
    V. I. Denisov, B. N. Shvilkin, V. A. Sokolov, and M. I. Vasili’ev, Phys. Rev. D 94, 045021 (2016). doi 10.1103/PhysRevD.94.045021ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    V. R. Khalilov and I. V. Mamsurov, Mod. Phys. Lett. A 31, 1650032 (2016). doi 10.1142/S0217732316500322ADSCrossRefGoogle Scholar
  27. 27.
    A. F. Zakharov, Phys. Rev. D 90, 062007 (2014). doi 10.1103/PhysRevD.90.062007ADSCrossRefGoogle Scholar
  28. 28.
    W.-T. Ni, Phys. Lett. A 379, 1297 (2015).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    W.-T. Ni, H.-H. Mei, and S.-J. Wu, Mod. Phys. Lett. A 28, 1340013 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    V. I. Denisov and I. P. Denisova, Dokl. Phys. 46, 377 (2001). doi 10.1134/1.1384928ADSCrossRefGoogle Scholar
  31. 31.
    P. A. Vshivtseva and M. M. Denisov, Comput. Math. Math. Phys. 49, 2092 (2009). doi 10.1134/S0965542509120094MathSciNetCrossRefGoogle Scholar
  32. 32.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1988).zbMATHGoogle Scholar
  33. 33.
    V. I. Denisov, I. V. Krivchenkov, and I. P. Denisova, J. Exp. Theor. Phys. 95, 194 (2002). doi 10.1134/1.1506425ADSCrossRefGoogle Scholar
  34. 34.
    J. Y. Kim, J. Cosmol. Astropart. Phys., No. 10, 056 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    V. I. Denisov, I. P. Denisova, and S. I. Svertilov, Theor. Math. Phys. 135, 720 (2003).CrossRefGoogle Scholar
  36. 36.
    J. Y. Kim and T. Lee, J. Cosmol. Astropart. Phys., No. 11, 017 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    V. I. Denisov, V. A. Sokolov, and M. I. Vasili’ev, Phys. Rev. D 90, 023011 (2014). doi 10.1103/Phys-RevD.90.023011ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • M. I. Vasili’ev
    • 1
  • V. I. Denisov
    • 1
  • A. V. Kozar’
    • 1
  • P. A. Tomasi-Vshivtseva
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations