Moscow University Physics Bulletin

, Volume 72, Issue 6, pp 614–619 | Cite as

Numerical Simulation of Gravity Waves Excited in the Ocean by Low-Frequency Surface Seismic Waves Based on GPS Recordings

  • K. A. Sementsov
  • M. A. Nosov
  • S. V. Kolesov
  • Y. Wu
Physics of Earth, Atmosphere, and Hydrosphere
  • 1 Downloads

Abstract

A numerical experiment for reproducing the generation of free gravity waves in the ocean by low-frequency surface seismic waves passing across the bottom is described. The dynamics of the bottom movement is reconstructed based on the real GPS data recorded during the disastrous Tohoku earthquake of March 11, 2011. Results of the numerical simulation show that horizontal movements of underwater slopes play a key role in the generation of free gravity waves.

Keywords

tsunami tsunami forerunners Rayleigh waves Love waves surface seismic waves gravity waves in the ocean potential wave theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nakamura and H. Watanabe, Report on the Chilean Tsunami of May 24, 1960, as Observed along the Coast of Japan (Committee for Field Investigation of the Chilean Tsunami, 1961), p. 82.Google Scholar
  2. 2.
    H. B. Milburn, A. I. Nakamura, and F. I. Gonzalez, in Proc. Oceans 96 MTS/IEEE Conf., Fort Lauderdale, United States, 1996, p. 390.CrossRefGoogle Scholar
  3. 3.
    M. A. Nosov, K. A. Sementsov, S. V. Kolesov, H. Matsumoto, and B. W. Levin, Dokl. Earth Sci. 461, 408 (2015). doi 10.1134/S1028334X15040121ADSCrossRefGoogle Scholar
  4. 4.
    S. Murotani, M. Iwai, K. Satake, et al., Pure Appl. Geophys. 172, 683 (2015). doi 10.1007/s00024-014-1006-5ADSCrossRefGoogle Scholar
  5. 5.
    Y. Okada, J. Phys. Earth 43, 697 (1995).CrossRefGoogle Scholar
  6. 6.
    B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, 2016).CrossRefGoogle Scholar
  7. 7.
    K. Aki and P. Richards, Quantitative Seismology. Theory and Methods (W. H. Freeman, San Francisco, 1980), Vol. 1.Google Scholar
  8. 8.
    M. A. Nosov and S. V. Kolesov, Nat. Hazards Earth Syst. Sci. 7, 243 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Kolesov and M. A. Nosov, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 3, 163904 (2016).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, 1987).MATHGoogle Scholar
  11. 11.
    M. A. Nosov, A. V. Moshenceva, and S. V. Kolesov, Pure Appl. Geophys. 170, 1647 (2013). doi 10.1007/s00024-012-0605-2ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, Pure Appl. Geophys. 171, 3515 (2014). doi 10.1007/s00024-013-0730-6ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Nosov, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 33, 109 (1992).Google Scholar
  14. 14.
    A. E. H. Love, Some Problems of Geodynamics (Cambridge Univ. Press, 1911).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • K. A. Sementsov
    • 1
  • M. A. Nosov
    • 1
    • 2
  • S. V. Kolesov
    • 1
  • Y. Wu
    • 3
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Institute of Marine Geology and Geophysics, Far Eastern BranchRussian Academy of SciencesYuzhno-SakhalinskRussia
  3. 3.Earthquake Research InstituteUniversity of TokyoTokyoJapan

Personalised recommendations