Moscow University Mechanics Bulletin

, Volume 72, Issue 3, pp 59–65 | Cite as

Formation fronts of a nonlinear elastic medium from a medium without shear stresses

Article
  • 16 Downloads

Abstract

The fronts of phase transition of a medium without shear stresses to a nonlinear incompressible anisotropic elastic medium are considered. The mass flux through unit area of a front is assumed to be known. The variation of the tangential components of the medium’s velocity and the variation of the arising shear stresses are studied. An explicit form of boundary conditions is found using the existence condition of a discontinuity front structure. The Kelvin–Voight viscoelastic model is adopted for this structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  2. 2.
    A. G. Kulikovskii, “Surfaces of Discontinuity Separating two Perfect Media of Different Properties. Recombination Waves in Magnetohydrodynamics,” Prikl. Mat. Mekh. 32 (6), 1125–1131 (1968) [J. Appl. Math. Mech. 32 (6), 1145–1152 (1968)].MATHGoogle Scholar
  3. 3.
    A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (Moskovskii Litsei, Moscow, 1998; CRC Press, Boca Raton, 1995).MATHGoogle Scholar
  4. 4.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).MATHGoogle Scholar
  5. 5.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Plenum, New York, 1985).CrossRefGoogle Scholar
  6. 6.
    A. A. Barmin and A. G. Kulikovskii, “Ionization Fronts and Recombination in an Electromagnetic Field,” (VINITI, Moscow, 1971), Itogi Nauki Tekh., Ser.: Hydromechanics, Vol. 5, pp. 5–31.Google Scholar
  7. 7.
    A. G. Kulikovskii and A. P. Chugainova, “Classical and Non-Classical Discontinuities in Solutions of Equations of Non-Linear Elasticity Theory,” Usp. Mat. Nauk 63 (2), 85–152 (2008) [Russ. Math. Surv. 63 (2), 283–350 (2008)].CrossRefGoogle Scholar
  8. 8.
    A. G. Kulikovskii and A. P. Chugainova, “Study of Discontinuities in Solutions of the Prandtl–Reuss Elastoplasticity Equations,” Zh. Vychisl. Mat. Mat. Fiz. 56 (4), 650–663 (2016) [Comput. Math. Math. Phys. 56 (4), 637–649 (2016)].MathSciNetMATHGoogle Scholar
  9. 9.
    A. G. Kulikovskii and A. P. Chugainova, “A Self-SimilarWave Problem in a Prandtl–Reuss Elastoplastic Medium,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 295, 195–205 (2016) [Proc. Steklov Inst. Math. 295 (1), 179–189 (2016)].MATHGoogle Scholar
  10. 10.
    A. G. Kulikovskii, “Multi-Parameter Fronts of Strong Discontinuities in Continuum Mechanics,” Prikl. Mat. Mekh. 75 (4), 531–550 (2011) [J. Appl. Math. Mech. 75 (4), 378–389 (2011)].MathSciNetGoogle Scholar
  11. 11.
    A. G. Kulikovskii and E. I. Sveshnikova, “The formation of an Anisotropic Elastic Medium on the Compaction Front of a Stream of Particles,” Prikl. Mat. Mekh. 79 (6), 739–755 (2015) [J. Appl. Math. Mech. 79 (6), 521–530 (2015)].MathSciNetGoogle Scholar
  12. 12.
    V. V. Stepanov, A Course of Differential Equations (Gostekhlit, Moscow, 1959) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityLeninskie Gory, MoscowRussia

Personalised recommendations