Moscow University Mathematics Bulletin

, Volume 72, Issue 3, pp 133–136 | Cite as

Natural deduction system for three-valued Heyting’s logic

Brief Communications
  • 23 Downloads

Abstract

A Gentzen-style natural deduction system for the propositional fragment of three-valued Heyting’s logic is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Gentzen, “Investigation of Logical Deductions,” in Mathematical Theory of Logical Deduction, Ed. by A. V. Idel’son and G. E. Mintz (Nauka, Moscow, 1967) pp. 9–74. [Translated from “Untersuchungen über das logische Schliessen”, I, II, Mathem. Zeit., 39 (2), 176 (1934); 39 (3), 405 (1935)].Google Scholar
  2. 2.
    B. Kooi and A. Tamminga, “Completeness via Correspondence for Extensions of the Logic of Paradox,” Rev. Symb. Log. 5 (4), 720 (2012).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. Tamminga, “Correspondence Analysis for Strong Three-Valued Logic,” Logical Investigations 20, 255 (2014).MathSciNetMATHGoogle Scholar
  4. 4.
    A. Heyting, “Die Formalen Regeln der intuitionistischen Logik,” in Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (Deutsche Akademie der Wissenschaften zu Berlin, 1930), pp. 42–56.Google Scholar
  5. 5.
    K. Gödel “Zum intuitionistischen Aussgenkalkül,” Anz. Akad. Wiss. Wien. 69, 65 (1932).MATHGoogle Scholar
  6. 6.
    S. Jaśkowski, “Recherches sur le Système de la Logique Intuitioniste,” Actes Congr. Int. Phil. Sci. 6, 58 (1936).MATHGoogle Scholar
  7. 7.
    J. Lukasiewicz, “Die Logik und das Grundlagenproblem,” Entreti. Zürich Fondements et Méthode Sci. Math. 12, 6 (1941).MATHGoogle Scholar
  8. 8.
    Ja. S. Smetanic, “On the Completeness of the Propositional Calculus with Additional Operations in One Argument,” Trudy Moskov. Matem. Obshch. 9, 357 (1960).MathSciNetGoogle Scholar
  9. 9.
    V. A. Yankov, “The Calculus of the Weak Law of Excluded Middle,” Izvest. Akad. Nauk SSSR, Ser. Matem. 32 (5), 1044 (1968) [Math. of the USSR–Izvestiya 2 (5), 997 (1968)].MathSciNetGoogle Scholar
  10. 10.
    A. S. Karpenko, The Development of Many-valued Logic (LKI Publ., Moscow, 2010) [in Russian].MATHGoogle Scholar
  11. 11.
    L. Henkin, “The Completeness of the First-Order Functional Calculus,” J. Symb. Log. 14 (3), 159 (1949).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Moscow State UniversityFaculty of Mechanics and MathematicsLeninskie Gory, MoscowRussia

Personalised recommendations