Moscow University Mathematics Bulletin

, Volume 72, Issue 3, pp 94–101 | Cite as

Dual variational formulation of the electrostatic problem in an inhomogeneous anisotropic dielectric

  • V. S. Zarubin
  • G. N. Kuvyrkin
  • I. Yu. Savel’eva


The use of developed prospective dielectric materials in various modern electrotechnical and electrophysical devices requires reliable forecast of attainability of the required level of final characteristics depending on properties of those materials. Such forecast is based (among others) on solution of electrostatic problems in an inhomogeneous anisotropic medium allowing one to estimate the ability to satisfy the qualifying standards for effective characteristics of created materials. A dual variational formulation of an electrostatic problem in an inhomogeneous anisotropic dielectric is used to solve these problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Electric Properties of Polymers, Ed. by B. I. Sazhin (Khimiya, Leningrad, 1986) [in Russian].Google Scholar
  2. 2.
    D. Yu. Kalinin, S. V. Reznik, E. I. Suzdal’tsev, and A. V. Shulyakovskii, Glass and Ceramics. Materials and Coatings in Extreme Conditions. A Look into the Future, Vol. 2: Advanced Production Technologies. Ed. by S. V. Reznik (N. E. Bauman Tech. Univ., Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    E. I. Suzdal’tsev, “Radio Transparent, Heat-Resistant Materials for the 21st Century,” Ogneupory i Tekhn. Keramika, No. 3, 42 (2002) [Refractories and Industrial Ceramics 43 (3), 103 (2002)].Google Scholar
  4. 4.
    A. G. Romashin, V. E. Gaidachuk, Ya. S. Karpov, and M. Yu. Rusin, Radio Transparent Cowlings of Aerial Vehicles (National Aerospace Univ. “Kharkov Aviation Inst., Kharkov, 2003) [in Russian].Google Scholar
  5. 5.
    A. P. Vinogradov, Electrodynamics of Composites (Editorial URSS, Moscow, 2001) [in Russian].Google Scholar
  6. 6.
    Physics of Composites, Vol. 2. Ed. by N. N. Trofimov (Mir, Moscow, 2005) [in Russian].Google Scholar
  7. 7.
    A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Sci. Publ., Singapore, 2007; Mir, Moscow, 2011).CrossRefMATHGoogle Scholar
  8. 8.
    V. S. Zarubin, G. N. Kuvyrkin, and I. Yu. Savel’eva, “Evaluation of Dielectric Permittivity of a Composite with Dispersive Inclusions,” Vestn. N. E. Bauman Tech. Univ. Ser. Priborostroenie., No. 3, 50 (2015).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 8: Electrodynamics of Continuum (Nauka, Moscow, 1992) [in Russian].Google Scholar
  10. 10.
    V. V. Tolmachev, A. M. Golovin, and V. S. Potapov, Thermodynamics and Electrodynamics of Continuum (Moscow State Univ., Moscow, 1988) [in Russian].Google Scholar
  11. 11.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (N. E. Bauman Tech. Univ., Moscow, 2008) [in Russian].MATHGoogle Scholar
  12. 12.
    E. A. Vlasova, V. S. Zarubin and G. N. Kuvyrkin, Approximate Methods of Mathematical Physics (N. E. Bauman Tech. Univ., Moscow, 2004) [in Russian].Google Scholar
  13. 13.
    V. I. Van’ko, O. V. Ermoshina, and G. N. Kuvyrkin, Variational Calculus and Optimal Control. Ed. by V. S. Zarubin and A. P. Krishchenko (N. E. Bauman Tech. Univ., Moscow, 2001) [in Russian].Google Scholar
  14. 14.
    B. E. Pobedrya, Mechanics of Composites (Moscow State Univ., Moscow, 1984) [in Russian].MATHGoogle Scholar
  15. 15.
    A. N. Kanatnikov and A. P. Krishchenko, Linear Algebra, Ed. by V. S. Zarubin and A. P. Krishchenko (N. E. Bauman Tech. Univ., Moscow, 1999) [in Russian].Google Scholar
  16. 16.
    N. P. Abovskii, N. P. Andreev, and A. P. Deruga, Variational Principles of Elasticity and Shell Theory (Nauka, Moscow, 1978) [in Russian].Google Scholar
  17. 17.
    K. Rektorys, Variational Methods in Mathematics, Science and Engineering (Springer Netherlands, 1980; Mir, Moscow, 1985).MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. S. Zarubin
    • 1
  • G. N. Kuvyrkin
    • 1
  • I. Yu. Savel’eva
    • 1
  1. 1.Bauman Moscow State Technical Universitydepartment of applied mathematicsMoscowRussia

Personalised recommendations