Coordination Numbers and Topology of Crystalline Hydrocarbons

Abstract

Different types of coordination numbers in molecular crystals are discussed. Monosystem crystal structures of hydrocarbons are used as an example to study the relation between parameter R of a Delaunay system, and the coordination numbers, topological types, and intermolecular interaction energies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Kitaigorodskii, A.I., Organicheskaya kristallokhimiya (Organic Crystal Chemistry), Moscow: Akad. Nauk SSSR, 1955.

  2. 2

    Zorkii, P.M., Zh. Fiz. Khim., 1994, vol. 68, p. 966.

    CAS  Google Scholar 

  3. 3

    Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr., Sect. B: Struct. Sci., 2000, vol. 56, p. 1035.

    Article  Google Scholar 

  4. 4

    Blatov, V.A., Crystallogr. Rev., 2004, vol. 10, p. 249.

    CAS  Article  Google Scholar 

  5. 5

    Carugo, O., Blatova, O.A., Medrish, E.O., Blatov, V.A., and Proserpio, D.M., Sci. Rep., 2017, vol. 7, 13209.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6

    Zefirov, Yu.V. and Zorkii, P.M., Vestn. Mosk. Univ., Ser. 2: Khim., 1978, vol. 19, p. 554.

    CAS  Google Scholar 

  7. 7

    Zorkii, P.M. and Zefirov, Yu.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1972, vol. 13, p. 590.

    CAS  Google Scholar 

  8. 8

    Grineva, O.V., J. Struct. Chem., 2017, vol. 58, p. 373.

    CAS  Article  Google Scholar 

  9. 9

    Banaru, A.M., Moscow Univ. Chem. Bull. (Engl. Transl.), 2009, vol. 64, p. 80.

  10. 10

    Lord, E.A. and Banaru, A.M., Moscow Univ. Chem. Bull. (Engl. Transl.), 2012, vol. 67, p. 50.

  11. 11

    Banaru, A. and Kochnev, A., Stud. Univ. Babes-Bolyai, Chem., 2017, vol. 62, p. 121.

    CAS  Google Scholar 

  12. 12

    Delone, B.N., Dolbilin, N.P., Shtogrin, M.I., and Galiulin, R.V., Dokl. Akad. Nauk SSSR, 1976, vol. 227, p. 19.

    Google Scholar 

  13. 13

    Galiulin, R.V., Zh. Vychisl. Mat. Mat. Fiz., 2003, vol. 43, p. 790.

    Google Scholar 

  14. 14

    Baburin, I.A., Bouniaev, M., Dolbilin, N., Erokhovets, N.Yu., Garber, A., Krivovichev, S.V., and Schulte, E., Acta Crystallogr., Sect. A: Found. Adv., 2018, vol. 74, p. 616.

    CAS  Article  Google Scholar 

  15. 15

    Dolbilin, N., Struct. Chem., 2016, vol. 27, p. 1725.

    CAS  Article  Google Scholar 

  16. 16

    Klee, W.E., Cryst. Res. Technol., 2004, vol. 39, p. 959.

    CAS  Article  Google Scholar 

  17. 17

    Bonneau, C., Delgado-Friedrichs, O., O’Keeffe, M., and Yaghi, O.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2004, vol. 60, p. 517.

    Article  CAS  Google Scholar 

  18. 18

    Blatov, V.A., J. Struct. Chem., 2009, vol. 50, p. 160.

    Article  CAS  Google Scholar 

  19. 19

    O’Keeffe, M., Peskov, M.A., Ramsden, S.J., and Yaghi, O.M., Acc. Chem. Res., 2008, vol. 41, p. 1782.

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Blatov, V., O’Keeffe, M., and Proserpio, D.M., CrystEngComm, 2010, vol. 12, p. 44.

    CAS  Article  Google Scholar 

  21. 21

    McKinnon, J.J., Spackman, M.A., and Mitchell, A.S., Chem.-Eur. J., 1998, vol. 4, p. 2136.

    CAS  Article  Google Scholar 

  22. 22

    Filippini, G. and Gavezzotti, A., Acta Crystallogr., Sect. B: Struct. Sci., 1993, vol. 49, p. 868.

    Article  Google Scholar 

  23. 23

    Prokaeva, M.A., Baburin, I.A., and Serezhkin, V.N., J. Struct. Chem., 2009, vol. 50, p. 867.

    CAS  Article  Google Scholar 

  24. 24

    Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, p. 3576.

    CAS  Article  Google Scholar 

  25. 25

    Gridin, D.M. and Banaru, A.M., J. Struct. Chem., 2020, vo. 61, p. 742.

    CAS  Article  Google Scholar 

  26. 26

    Uno, K., Ogawa, Y., and Nakamura, N., Cryst. Growth Des., 2008, vol. 8, p. 592.

    CAS  Article  Google Scholar 

  27. 27

    Banaru, A.M., Crystallogr. Rep., 2019, vol. 64, p. 847.

    CAS  Article  Google Scholar 

  28. 28

    Boese, R., Bläser, D., Latz, R., and Bäumen, A., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1999, vol. 55, IUC9900023.

    Google Scholar 

  29. 29

    Hu, J.-M., Blatov, V.A., Yu, B., Van Hecke, K., and Cui, G.-H., Dalton Trans., 2016, vol. 45, p. 2426.

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Podsiadlo, M., Olejniczak, A., and Katrusiak, A., J. Phys. Chem. C, 2013, vol. 117, p. 4759.

    CAS  Article  Google Scholar 

  31. 31

    Ahmed, N.A., Kitaigorodsky, A.I., and Sirota, M.I., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, p. 2875.

    CAS  Article  Google Scholar 

  32. 32

    Boese, R., Blaeser, D., Gleiter, R., Pfeifer, K.H., Billups, W.E., and Haley, M.M., J. Am. Chem. Soc., 1993, vol. 115, p. 743.

    CAS  Article  Google Scholar 

  33. 33

    McMullan, R.K., Kvick, A., and Popelier, P., Acta Crystallogr., Sect. B: Struct. Sci., 1992, vol. 48, p. 726.

    Article  Google Scholar 

  34. 34

    Li, M., Li, D., O’Keeffe, M., and Yaghi, O.M., Chem. Rev., 2014, vol. 114, p. 1343.

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Beukemann, A. and Klee, W.E., Z. Kristallogr., 1992, vol. 201, p. 37.

    Article  Google Scholar 

  36. 36

    Boese, R., Haumann, T., Jemmis, E.D., et al., Liebigs Ann., 1996, no. 6, p. 913.

  37. 37

    Haumann, T., Boese, R., Kozhushkov, S.I., et al., Liebigs Ann., 1997, no. 10, p. 2047.

  38. 38

    Boese, R., Blaeser, D., Gomann, K., Pfeifer, K.H., and Brinker, U.H., J. Am. Chem. Soc., 1989, vol. 111, p. 1501.

    CAS  Article  Google Scholar 

  39. 39

    Delgado-Friedrichs, O. and O’Keeffe, M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2003, vol. 59, p. 351.

    Article  Google Scholar 

  40. 40

    Banaru, A., Crystallogr. Rep., 2018, vol. 63, p. 1071.

    CAS  Article  Google Scholar 

  41. 41

    Banaru, A., Crystallogr. Rep., 2018, vol. 63, p. 1077.

    CAS  Article  Google Scholar 

  42. 42

    Liebling, G. and Marsh, R.E., Acta Crystallogr., 1965, vol. 19, p. 202.

    CAS  Article  Google Scholar 

  43. 43

    Haumann, T., Benet-Buchholz, J., and Boese, R., J. Mol. Struct., 1996, vol. 374, p. 299.

    CAS  Article  Google Scholar 

  44. 44

    Yasuda, N., Uekusa, H., and Ohashi, Y., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2001, vol. 57, o1189.

    CAS  Article  Google Scholar 

  45. 45

    Bond, A.P. and Davies, J.E., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2001, vol. 57, o1191.

    CAS  Article  Google Scholar 

  46. 46

    de Meijere, A., Wenck, H., Zöllner, S., et al., Chem.-Eur. J., 2001, vol. 7, p. 5382.

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Jeffrey, G.A. and Rollett, J.S., Proc. R. Soc. London, Ser. A, 1952, vol. 213, p. 86.

    CAS  Article  Google Scholar 

  48. 48

    Seiler, P., Belzner, J., Bunz, U., and Szeimies, G., Helv. Chim. Acta, 1988, vol. 71, p. 2100.

    CAS  Article  Google Scholar 

  49. 49

    Roth, W.R., Winzer, M., Lennarte, H.-M., and Boese, R., Chim. Ber., 1993, vol. 126, p. 2717.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The calculation method was developed by A.M. Banaru. Both authors participated in processing the data and discussing the results.

Corresponding author

Correspondence to A. M. Banaru.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Glushachenkova

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gridin, D.M., Banaru, A.M. Coordination Numbers and Topology of Crystalline Hydrocarbons. Moscow Univ. Chem. Bull. 75, 354–367 (2020). https://doi.org/10.3103/S0027131420060115

Download citation

Keywords:

  • coordination number
  • intermolecular interaction energy
  • crystallographic network
  • Voronoi–Dirichlet polyhedron