Moscow University Chemistry Bulletin

, Volume 72, Issue 6, pp 315–321 | Cite as

Direct Analysis of Natural Waters by Electron Spray Ionization and High-Resolution Time-of-Flight Mass Spectrometry Detection. Determination of Pesticides of Various Classes

  • V. G. Amelin
  • M. A. Saun’kina
  • A. M. Andoralov


The possibility of directly determining 36 pesticides (derivatives of urea, triazines, triazoles, imidazoles, carbamates, triazinones, benzamides, and pyridazinones and organophosphorus pesticides) by electrospray ionization with high-resolution quadrupole time-of-flight mass spectrometry in natural waters is demonstrated. A significant matrix effect is observed in the determination of pesticides in natural waters, and the use of the standard addition method is proposed for their determination in test samples, both undiluted and diluted with deionized water. The analytical range of the analytes was 0.5–50 ng/mL. The relative standard deviation of the results does not exceed 10%; the time required for the analysis is 10–15 min.


direct electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry natural water analysis pesticides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ozhan, G., Ozden, S., and Alpertunga, B., J. Environ. Sci. Health, 2005, vol. 40, p.827.CrossRefGoogle Scholar
  2. 2.
    Tuzimski, T. and Sobczynski, J., J. Liq. Chromatogr. Relat. Technol., 2009, vol. 32, p. 1241.CrossRefGoogle Scholar
  3. 3.
    Polati, S., Bottaro, M., Frascarolo, P., Gosetti, F., Gianotti, V., and Gennaro, M.C., Anal. Chim. Acta, 2006, vol. 579, p.146.CrossRefGoogle Scholar
  4. 4.
    Zhou, Q., Ding, Y., and Xiao, J., Chromatographia, 2007, vol. 65, p.25.CrossRefGoogle Scholar
  5. 5.
    Archivio, A.A., Fanelli, M., Mazzeo, P., and Ruggieri, F., Talanta, 2007, vol. 71, p.25.CrossRefGoogle Scholar
  6. 6.
    Amelin, V.G., Lavrukhin, D.K., and Tret’yakov, A.V., J. Anal. Chem., 2013, vol. 68, no. 9, p.822.CrossRefGoogle Scholar
  7. 7.
    Amelin, V.G., Bol’shakov, D.S., and Tretyakov, A.V., J. Anal. Chem., 2012, vol. 67, no. 11, p.904.CrossRefGoogle Scholar
  8. 8.
    Amelin, V.G., Bol’shakov, D.S., and Tret’yakov, A.V., J. Anal. Chem., 2013, vol. 68, no. 5, p.386.CrossRefGoogle Scholar
  9. 9.
    Bol’shakov, D.S., Amelin, V.G., and Tret’yakov, A.V., J. Anal. Chem., 2014, vol. 69, no. 1, p.72.CrossRefGoogle Scholar
  10. 10.
    Karg, F.P.M., J. Chromatogr. A, 1993, vol. 634, p.87.CrossRefGoogle Scholar
  11. 11.
    Henriksen, T., Svensmark, B., Lindhardt, B., and Juhler, R.K., Chemosphere, 2001, vol. 44, p. 1531.CrossRefGoogle Scholar
  12. 12.
    Richardson, S.D. and Ternes, T.A., Anal. Chem., 2011, vol. 83, p. 4614.CrossRefGoogle Scholar
  13. 13.
    Morlock, G. and Schwack, W., Anal. Bioanal. Chem., 2006, vol. 38, p.586.CrossRefGoogle Scholar
  14. 14.
    Krasnova, T.A. and Amelin, V.G., Voda: Khim. Ekol., 2013, no. 11, p.81.Google Scholar
  15. 15.
    Shrivas, K. and Wu, G.-F., J. Mass Spectrom, 2007, vol. 42, p. 1637.CrossRefGoogle Scholar
  16. 16.
    Zenkevich, I.G. and Morozova, T.E., J. Anal. Chem., 2014, vol. 69, no. 4, p. 327.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. G. Amelin
    • 1
  • M. A. Saun’kina
    • 1
  • A. M. Andoralov
    • 1
  1. 1.Vladimir State UniversityVladimirRussia

Personalised recommendations