Moscow University Chemistry Bulletin

, Volume 72, Issue 6, pp 267–268 | Cite as

Synthesis of Copper Nanoparticles by Thermal Decomposition of Anhydrous Copper Formate

  • O. I. Vernaya
  • V. V. Epishev
  • M. A. Markov
  • V. A. Nuzhdina
  • V. V. Fedorov
  • V. P. Shabatin
  • T. I. Shabatina
Article
  • 2 Downloads

Abstract

Highly dispersed anhydrous copper formate obtained by cryochemical synthesis is subjected to thermal decomposition in an atmosphere of hydrogen. X-ray diffraction, PAM, UV-spectroscopy, and lowtemperature adsorption of argon show that the obtained powder contains only copper nanoparticles with a size of 50–200 nm.

Keywords

synthesis nanoparticles copper anhydrous copper formate thermal decomposition 

References

  1. 1.
    Huang, Z., Cui, F., Kang, H., Chen, J., Zhang, X., and Xia, C., Chem. Mater., 2008, vol. 20, p. 5090.CrossRefGoogle Scholar
  2. 2.
    Sharghi, H., Khalifeh, R., and Doroomand, M.M., Adv. Synth. Catal., 2009, vol. 351, p.207.CrossRefGoogle Scholar
  3. 3.
    Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S., and Tang, S.H., Langmuir, 1997, vol. 13, p.172.CrossRefGoogle Scholar
  4. 4.
    Athanassiou, E.K., Grass, R.N., and Stark, W.J., Nanotecnology, 2006, vol. 17, p. 1668.CrossRefGoogle Scholar
  5. 5.
    Lee, Y., Choi, J., Lee, K.J., Stott, N.E., and Kim, D., Nanotecnology, 2008, vol. 19, p.1.Google Scholar
  6. 6.
    Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., and Rahuman, A., Mater. Lett., 2012, vol. 71, p.114.CrossRefGoogle Scholar
  7. 7.
    Stelzig, S.H., Menneking, C., Hoffmann, M.S., Eisele, K., Barcikowski, S., Klapper, M., and Mullen, K., Eur. Polym. J., 2011, vol. 47, p.662.CrossRefGoogle Scholar
  8. 8.
    Valodkar, M., Modi, S., Pal, A., and Thakore, S., Mater. Res. Bull., 2011, vol. 46, p.384.CrossRefGoogle Scholar
  9. 9.
    Khanna, P.K., Gaikwad, S., Adhyapak, P.V., Singh, N., and Marimuthu, R., Mater. Lett., 2007, vol. 61, p. 4711.CrossRefGoogle Scholar
  10. 10.
    Qing-ming, L., De-bi, Z., Yamamoto, Y., Kuruda, K., and Okido, M., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, p. 2991.CrossRefGoogle Scholar
  11. 11.
    Qing-ming, L., Yasunami, T., Kuruda, K., and Okido, M., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, p. 2198.CrossRefGoogle Scholar
  12. 12.
    Song, X., Sun, S., Zhang, W., and Yin, Z., J. Colloid Interface Sci., 2004, vol. 273, p.463.CrossRefGoogle Scholar
  13. 13.
    Zhu, H., Zhang, C., and Yin, Y., J. Cryst. Growth, 2004, vol. 270, p.722.CrossRefGoogle Scholar
  14. 14.
    Wu, S. and Chen, D., J. Colloid Interface Sci., 2004, vol. 273, p.165.CrossRefGoogle Scholar
  15. 15.
    Tilaki, R.M., Irajizad, A., and Mahdavi, S.M., Appl. Phys. A: Mater. Sci. Process., 2007, vol. 88, p.415.CrossRefGoogle Scholar
  16. 16.
    Zapsis, K.V., Dzhumaliev, A.S., Ushakov, N.M., and Kosobudskii, I.D., Tech. Phys. Lett., 2004, vol. 30, no. 6, p.485.CrossRefGoogle Scholar
  17. 17.
    Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H., and Kang, Y.S., Colloids Surf., A, 2006, vols. 284–285, p.364.Google Scholar
  18. 18.
    Arkhangel’skii, I.V., Valeeva, A.R., Shabatin, V.P., Chetverikov, N.I., and Petrov, E.N., USSR Patent 1293968, 1984.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • O. I. Vernaya
    • 1
  • V. V. Epishev
    • 1
  • M. A. Markov
    • 1
  • V. A. Nuzhdina
    • 1
  • V. V. Fedorov
    • 1
  • V. P. Shabatin
    • 1
  • T. I. Shabatina
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations