Adhesive Interaction of Elastic Bodies with Regular Surface Relief


This paper focuses on adhesive interaction between an axisymmetric indenter and an elastic half-space taking into account the surface microrelief in the form of regularly located identical asperities covering the indenter. The microlevel contact between the asperities system and the elastic half-space is considered discrete. The solution to the problem at the macrolevel is constructed using the dependence of the effective specific adhesion force on the value of the nominal gap obtained by solving the problem at the microlevel. The constructed solution makes it possible to model the influence of microgeometry and adhesion parameters on the contact interaction of elastic bodies at the macrolevel.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1

    B. V. Derjaguin, V. M. Müller, and Yu. P. Toporov, “Effect of contact deformation on the adhesion of particles,” J. Colloid Interface Sci. 53 (2), 314–326 (1975).

    ADS  Article  Google Scholar 

  2. 2

    V. M. Muller, V. S. Yushchenko, and B. V. Derjaguin, “On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane,” J. Colloid Interface Sci. 77 (1), 91–101 (1980).

    ADS  Article  Google Scholar 

  3. 3

    B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Springer, 1987).

    Google Scholar 

  4. 4

    G. A. D. Briggs and B. J. Briscoe, “The effect of surface topography on the adhesion of elastic solids,” J. Phys. D: Appl. Phys. 10 (18), 2453–2466 (1977).

    ADS  Article  Google Scholar 

  5. 5

    J. Purtov, E. V. Gorb, M. Steinhart, and S. N. Gorb, “Measuring of the hardly measurable: adhesion properties of anti-adhesive surfaces,” Appl. Phys. A 111 (1), 183–189 (2013).

    ADS  Article  Google Scholar 

  6. 6

    F. M. Borodich and O. Savencu, “Hierarchical models of engineering rough surfaces and bio-inspired adhesives,” in Bio-Inspired Structured Adhesives. Biologically-Inspired Systems, Ed. by L. Heepe, L. Xue, and S. Gorb (Springer, Cham, 2017), Vol. 9.

    Google Scholar 

  7. 7

    K. N. G. Fuller and D. Tabor, “The effect of surface roughness on the adhesion of elastic solids,” Proc. R. Soc. London, Ser. A 345 (1642), 327–342 (1975).

    ADS  Article  Google Scholar 

  8. 8

    I. G. Goryacheva, Contact Mechanics in Tribology (Kluwer Acad. Publ., Dordrecht, 1998).

    Google Scholar 

  9. 9

    I. G. Goryacheva, Mekhanika friktsionnogo vzaimodeystviya (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  10. 10

    K. L. Johnson, “The adhesion of two elastic bodies with slightly wavy surfaces,” Int. J. Solids Struct. 32 (3-4), 423–430 (1995).

    Article  Google Scholar 

  11. 11

    C. Y. Hui, Y. Y. Lin, J. M. Baney, and E. J. Kramer, “The mechanics of contact and adhesion of periodically rough surfaces,” J. Polym. Sci., Part B 39 (11), 1195–1214 (2001).

    Article  Google Scholar 

  12. 12

    G. G. Adams, “Adhesion at the wavy contact interface between two elastic bodies,” ASME J. Appl. Mech. 71 (6), 851–856 (2004).

    ADS  Article  Google Scholar 

  13. 13

    F. Jin, X. Guo, and Q. Wan, “Revisiting the Maugis-Dugdale adhesion model of elastic periodic wavy surfaces,” ASME. J. Appl. Mech. 83 (10), 101007 (2016).

    ADS  Article  Google Scholar 

  14. 14

    Yu. Yu. Makhovskaya, “Discrete contact of elastic bodies in the presence of adhesion,” Mech. Solids 38 (2), 39–48 (2003).

    Google Scholar 

  15. 15

    I. G. Goryacheva and Yu. Yu. Makhovskaya, “Elastic contact between nominally plane surfaces in the presence of roughness and adhesion,” Mech. Solids 52 (4), 435–444 (2017).

    ADS  Article  Google Scholar 

  16. 16

    P. R. Guduru, “Detachment of a rigid solid from an elastic wavy surface: theory,” J. Mech. Phys. Solids 55 (3), 445–472 (2007).

    ADS  Article  Google Scholar 

  17. 17

    H. Kesari and A. J. Lew, “Effective macroscopic adhesive contact behavior induced by small surface roughness,” J. Mech. Phys. Solids 59 (12), 2488–2510 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Q. Li, R. Pohrt, and V. L. Popov, “Adhesive strength of contacts of rough spheres,” Front. Mech. Eng. 5 (7) (2019).

  19. 19

    I. A. Soldatenkov, “The use of the method of successive approximations to calculate an elastic contact in the presence of molecular adhesion,” J. Appl. Math. Mech. 76 (5), 597–603 (2012).

    MathSciNet  Article  Google Scholar 

  20. 20

    I. A. Soldatenkov, “Contact problem with bulk-applied intermolecular interaction forces: a simplified solution method (two-level model),” Mech. Solids 83 (2), 303–310 (2019).

    ADS  Article  Google Scholar 

  21. 21

    B. A. Galanov, “Models of adhesive contact between rough elastic solids,” Int. J. Mech. Sci. 53 (11), 968–977 (2011).

    Article  Google Scholar 

  22. 22

    A. Pepelyshev, F. M. Borodich, B. A. Galanov, et al., “Adhesion of soft materials to rough surfaces: experimental studies, statistical analysis and modelling,” Coatings 8 (10), 350 (2018).

    Article  Google Scholar 

  23. 23

    D. Maugis, “Adhesion of spheres: the JKR-DMT transition using a dugdale model,” J. Colloid Interface Sci. 150 (1), 243–269 (1992).

    Article  Google Scholar 

  24. 24

    K. L. Johnson and J. A. Greenwood, “An adhesion map for the contact of elastic spheres,” J. Colloid Interface Sci. 192 (2), 326–333 (1997).

    ADS  Article  Google Scholar 

  25. 25

    I. G. Goryacheva and Yu. Yu. Makhovskaya, “Adhesive interaction of elastic bodies,” J. Appl. Math. Mech. 65 (2), 273–282 (2001).

    Article  Google Scholar 

  26. 26

    I. G. Goryacheva and Yu. Yu. Makhovskaya, “Approach to solving the problems on interaction between elastic bodies in the presence of adhesion,” Dokl. Phys. 49 (9), 534–539 (2004).

    ADS  Article  Google Scholar 

  27. 27

    I. Argatov, Q. Li, and V. L. Popov, “Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives,” Arch. Appl. Mech. 89 (8), 1447–1472 (2019).

    ADS  Article  Google Scholar 

Download references


This work is partially supported by the Russian Foundation for Basic Research (project no. 19-01-00231). The solution of the contact problem at the macrolevel and its analysis (Sections 3 and 4) were supported by the Russian Science Foundation (project no. 18-19-00574).

Author information



Corresponding author

Correspondence to Yu. Yu. Makhovskaya.

Additional information

Translated by L. Trubitsyna

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhovskaya, Y.Y. Adhesive Interaction of Elastic Bodies with Regular Surface Relief. Mech. Solids 55, 1105–1114 (2020).

Download citation


  • adhesion
  • discrete contact
  • regular relief