Surface of Discontinuity in Anisotropic Reduced Cosserat Continuum: Uniqueness Theorem for Dynamic Problems with Discontinuities


An isolated surface that moves relative to the micropolar media and across which the first derivatives of variables are discontinuous is considered. The reduced Cosserat continuum is an elastic medium where all translations and rotations are independent. Moreover, the force stress tensor is asymmetric and the couple stress tensor is equal to zero. Continuity conditions were established and it is shown that the first derivative of the rotation vector cannot have discontinuities. It is demonstrated that the solution in this case is unique.

This is a preview of subscription content, access via your institution.


  1. 1

    M. A. Kulesh, V. P. Matveenko, and I. N. Shardakov, “Constructing an analytical solution for Lamb waves using the Cosserat continuum approach,” J. Appl. Mech. Techn. Phys. 48 (1), 119–126 (2007).

    ADS  Article  Google Scholar 

  2. 2

    M. P. Varygina, O. V. Sadovskaya, and V. M. Sadovskii, “Resonant properties of moment Cosserat continuum,” J. Appl. Mech. Techn. Phys. 51 (3), 405–414 (2010).

    ADS  Article  Google Scholar 

  3. 3

    E. M. Suvorov, D. V. Tarlakovskii, and G. V. Fedotenkov, “The plane problem of the impact of a rigid body on a half-space modeled by a Cosserat medium,” J. Appl. Math. Mech. 76 (5), 511–518 (2012).

    MathSciNet  Article  Google Scholar 

  4. 4

    E. V. Zdanchuk, V. V. Kuroedov, and V. V. Lalin, “Variational formulation of dynamic problems for a nonlinear Cosserat medium,” J. Appl. Math. Mech. 81 (1), 66–70 (2017).

    MathSciNet  Article  Google Scholar 

  5. 5

    L. M. Schwartz, D. L. Johnson, and S. Feng, “Vibrational modes in granular materials,” Phys. Rev. Lett. 52 (10), 831–834 (1984).

    ADS  Article  Google Scholar 

  6. 6

    E. F. Grekova and G. C. Herman, “Wave propagation in rock modeled as reduced Cosserat continuum with weak anisotropy,” in Proc. 67th Europ. Assoc. Geosci. Engin., EAGE Conf. and Exhibition, Incorporating SPE Europe 2005 (Feria de Madrid, June 13–16, 2005), pp. 2643–2646.

  7. 7

    D. Harris, “Double-slip and spin: a generalization of the plastic potential model in the mechanics of granular materials,” Int. J. Eng. Sci. 47 (11-12), 208–1215 (2009).

    Article  Google Scholar 

  8. 8

    M. A. Kulesh, E. F. Grekova, and I. N. Shardakov, “The problem of surface wave propagation in a reduced Cosserat medium,” Acoust. Phys. 55 (2), 218–227 (2009).

    ADS  Article  Google Scholar 

  9. 9

    E. F. Grekova, M. A. Kulesh, and G. C. Herman, “Waves in linear elastic media with microrotations. Part 2: Isotropic reduced Cosserat model,” Bull. Seismol. Soc. Am. 99 (2B), 1423–1428 (2009).

    Article  Google Scholar 

  10. 10

    E. F. Grekova, “Linear reduced Cosserat medium with spherical tensor of inertia, where rotations are not observed in experiment,” Mech. Solids 47 (5), 538–544 (2012).

    ADS  Article  Google Scholar 

  11. 11

    V. A. Eremeev, “Conditions of acceleration waves’ propagation in thermoelastic micropolar media,” Vestn. Yuzhn. Nauchn. Tsentra Ross. Akad. Nauk 3 (4), 10–13 (2007).

    Article  Google Scholar 

  12. 12

    H. Altenbach, V. A. Eremeyev, L. P. Lebedev, and L. A. Rendon, “Acceleration waves and ellipticity in thermoelastic micropolar media,” Arch. Appl Mech. 80 (3), 217–227 (2010).

    Article  Google Scholar 

  13. 13

    V. V. Lalin and E. V. Zdanchuk, “Conditions on the surface of discontinuity for the reduced Cosserat continuum,” Mater. Phys. Mech. 31 (1–2), 28–31 (2017).

    Google Scholar 

  14. 14

    V. V. Lalin and E. V. Zdanchuk, “The initial boundary-value problem for a mathematical model for granular medium,” Appl. Mech. Mater. 725–726, 863–868 (2015).

    Article  Google Scholar 

  15. 15

    A. I. Lurie, Nonlinear Theory of Elasticity (North Holland, 2012) [in Russian].

    Google Scholar 

  16. 16

    G. I. Petrashen’, Propagation of Waves in Anisotropic Elastic Media (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  17. 17

    V. B. Poruchikov, Methods of the Classical Theory of Elastodynamics (Springer, Berlin, 1993).

    Google Scholar 

  18. 18

    J. Casey, “On the derivation of jump conditions in continuum mechanics,” Int. J. Struct. Changes Solids 3, 61–84 (2011).

    Google Scholar 

  19. 19

    J. C. Slattery, Momentum, Energy, and Mass Transfer in Continua (McGraw-Hill Kogakusha Ltd., Tokyo, 1972).

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. E. Anisimov or E. V. Zdanchuk or V. V. Lalin.

Additional information

Translated by E. Oborin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A.E., Zdanchuk, E.V. & Lalin, V.V. Surface of Discontinuity in Anisotropic Reduced Cosserat Continuum: Uniqueness Theorem for Dynamic Problems with Discontinuities. Mech. Solids 55, 1051–1056 (2020).

Download citation


  • micropolar continuum
  • reduced Cosserat continuum
  • surface of strong discontinuity
  • granular materials
  • kinematic and dynamic conditions
  • uniqueness theorem