TextJSM: Text Sentiment Analysis Method

  • E. V. Kotelnikov
Information Analysis


The TextJSM method of text sentiment analysis is proposed, based on JSM method of automated hypothesis generation. Two versions of the TextJSM method are presented, that is, for solving predictive and descriptive problems. Parallel implementation of the main stages of both versions is considered. Experimental studies based on the ROMIP 2011–2012 seminar text corpora show the superiority of the developed method over other data mining methods.


TextJSM JSM method sentiment analysis parallel implementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, B., Sentiment analysis and opinion mining, Synth. Lect. Hum. Lang. Technol., 2012, vol. 5, no.1.Google Scholar
  2. 2.
    Mining Text Data, Aggarwal, C. and Zhai, C., Eds., Springer, 2012.Google Scholar
  3. 3.
    Witten, I.H., Frank, E., Hall, M.A., and Pal, C.J., Data Mining, Practical Machine Learning Tools and Techniques, Elsevier, 2017, 4th ed.Google Scholar
  4. 4.
    Finn, V.K., Epistemological foundations of the JSM method for automatic hypothesis generation, Autom. Doc. Math. Linguist., 2014, vol. 48, no. 2, pp. 96–148.CrossRefGoogle Scholar
  5. 5.
    Smirnov, I.V., Investigation of methods for establishing the values of syntactic units of natural languages on the basis of intellectual data analysis, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Institute of System Analysis, Russian Academy of Sciences, 2008.Google Scholar
  6. 6.
    Kozhunova, O.S., Technology of the development of the semantic dictionary of the information monitoring system, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Institute of Informatics Problems, Russian Academy of Sciences, 2009.Google Scholar
  7. 7.
    Lyfenko, N.D., An approach to text data categorization based on the ideas of J.S. Mill, Autom. Doc. Math. Linguist., 2015, vol. 49, no. 6, pp. 202–212.CrossRefGoogle Scholar
  8. 8.
    Vychegzhanin, S.V. and Kotelnikov, E.V., Analysis of the influence of models of the presentation of texts for the quality of the classification of feedback by tonality, Fundam. Issled., 2015, no. 11, pp. 247–251.Google Scholar
  9. 9.
    Zabezhailo, M.I., Some capabilities of enumeration control in the JSM method, Sci. Tech. Inf. Process., 2014, vol. 41, no. 6, pp. 335–361.CrossRefGoogle Scholar
  10. 10.
    Vinogradov, D.V., The VKF method of data mining: Review of results and open problems, Iskusstv. Intell. Prinyatie Reshenii, 2017, no. 2, pp. 9–16.Google Scholar
  11. 11.
    Ol'shanskii, D.L., Selection of an algorithm for the parallel implementation of the similarity method in intelligent JSM systems, Autom. Doc. Math. Linguist., 2015, vol. 49, no. 4, pp. 109–116.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kotelnikov, E.V., Increasing the JSM method rate in text processing problems, Trudy Chetyrnadtsatoi natsional’noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2014 (24–27 oktyabrya 2014 goda, g. Kazan’ (Proc. Fourteenth Natl. Conf. on Artificial Intelligence with International Participation KII-2014 (October 24–27, 2014, Kazan)), Kazan, 2014, vol. 2, pp. 274–282.Google Scholar
  13. 13.
    Anshakov, O.M., The JSM method: A set-theoretical explanation, Autom. Doc. Math. Linguist., 2012, vol. 46, no. 5, pp. 202–220.CrossRefGoogle Scholar
  14. 14.
    Kuznetsov, S.O., Interpretation on graphs and complexity characteristics of problems of finding patterns of a certain type, Nauchno-Tekh. Inf., Ser. 2, 1989, no.1.Google Scholar
  15. 15.
    Andrews, S., A 'Best-of-Breed’ approach for designing a fast algorithm for computing fixpoints of Galois Connections, Inf. Sci., 2015, vol. 295, no. 20, pp. 633–649.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kotelnikov, E.V., Bushmeleva, N.A., Razova, E.V., Peskisheva, T.A., and Pletneva, M.V., Manually created sentiment lexicons: Research and development, Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue,” 2016, vol. 15, no. 22, pp. 281–295.Google Scholar
  17. 17.
    Kotelnikov, E.V., A finite automaton for primary text analysis in the tonality recognition problem, XVI Mezhdunarodnaya konferentsiya “Informatika: Problemy, metodologiya, tekhnologii” (11–12 fevralya 2016 goda) (XVI Int. Conf. Computer Science: Problems, Methodology, and Technologies (February 11–12, 2016)), 2016, vol. 4, pp. 208–211.Google Scholar
  18. 18.
    Segalovich, I., A fast morphological algorithm with unknown word guessing induced by a dictionary for a web search engine, Proceedings of MLMTA-2003, pp. 273–280.Google Scholar
  19. 19.
    Lan, M., Tan, C.L., Su, J., and Lu, Y., Supervised and traditional term weighting methods for automatic text categorization, IEEE Trans. Pattern Anal. Mach. Intell., 2009, vol. 31, no. 4, pp. 721–735.CrossRefGoogle Scholar
  20. 20.
    Kotelnikov, E.V. and Klekovkina, M.V., Automatic analysis of the tonality of texts based on machine learning methods, Komp’yuternaya lingvistika i intellektual’nye tekhnologii: Po materialam ezhegodnoi mezhdunar. konf. “Dialog” (Computer Linguistics and Intellectual Technologies: Proc. Annual International Conference Dialog), Moscow, 2012, vol. 2, pp. 27–36.Google Scholar
  21. 21.
    Dhillon, I.S., Co-clustering documents and words using bipartite spectral graph partitioning, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2001), 2001, pp. 269–274.Google Scholar
  22. 22.
    Kotelnikov, E.V. and Pletneva, M.V., Text sentiment classification based on genetic algorithm and word and document co-clustering, J. Comput. Sys. Sc. Int., 2016, vol. 55, no. 1, pp. 106–114.CrossRefzbMATHGoogle Scholar
  23. 23.
    Kotelnikov, E.V., The function of estimating the informativeness of hypotheses for the analysis of the tonality of texts on the basis of the JSM-method, Fundam. Issled., 2014, no. 11, pp. 2150–2154.Google Scholar
  24. 24.
    Manning, C.D., Raghavan, P., and Schütze, H., Introduction to Information Retrieval, Cambridge University Press, 2008.CrossRefzbMATHGoogle Scholar
  25. 25.
    Kotelnikov, E.V., Abductive logic reasoning for text tonality analysis based on the JSM method, Fund. Issled., 2015, no. 2, pp. 2801–2805.Google Scholar
  26. 26.
    Karpov, V.E., Introduction to parallelization of algorithms and programs, Komp’yut. Issled. Model., 2010, vol. 2, no. 3, pp. 231–272.Google Scholar
  27. 27.
    Intel Math Kernel Library (Intel MKL). Accessed October 12, 2017.Google Scholar
  28. 28.
    Kodagoda, N., Andrews, S., and Pulasinghe, K., A parallel version of the in-close algorithm, Proceedings of the 6th National Conference on Technology and Management (NCTM). IEEE, 2017, pp. 1–5.Google Scholar
  29. 29.
    Krajca, P., Outrata, J., and Vychodil, V., Advances in algorithms based on CbO, Proc. 8th Int. Conf. Concept Lattices and Their Applications (CLA), 2010, vol. 672, pp. 325–337.Google Scholar
  30. 30.
    Rajput, I.S., Kumar, B., and Singh, T., Performance comparison of sequential quick sort and parallel quick sort algorithms, Int. J. Comput. Appl., 2012, vol. 57, no. 9, pp. 14–22.Google Scholar
  31. 31.
    Russian Seminar on the Evaluation of Methods of Information Retrieval (ROMIP). Accessed October 12, 2017.Google Scholar
  32. 32.
    Chetviorkin, I., Braslavskiy, P., and Loukachevitch, N., Sentiment Analysis Track at ROMIP 2011, Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference Dialogue, 2012, vol. 2, no. 11, pp. 1–14.Google Scholar
  33. 33.
    Chetviorkin, I. and Loukachevitch, N., Sentiment Analysis Track at ROMIP 2012, Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog 2013,” Bekasovo, 2013, vol. 2, no. 12, pp. 40–50.Google Scholar
  34. 34.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Grama, A., Gupta, A., Karypis, G., and Kumar, V., Introduction to Parallel Computing, Addison-Wesley, 2003, 2nd ed.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Vyatka State UniversityKirovRussia

Personalised recommendations